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Introduction



Problem setting

» Equality constrained separable minimization

min  F(u,v):= f(u) + g(v) st.Au+Bv=>b| (1)
uel ,vey

Assumptions:
- U, V, A: Hilbert spaces with inner product (-,-) !
- A(B) : U(V) — A: bounded linear operators, b € A
- f(g) : U(V) = (—o0, +00]: CCP 2 with constants if(14) > 0
- Consistent condition: b € Adom f + Bdom g

» Composite convex minimization (b =0, B = —1I)
iy P(u) = f(u) + g(Au) )

1 . . .
When no confusion arises, we use the same bracket (-, -) for the inner products on U, V and A.

CCP means closed, convex and proper.



Preliminary

» Introduce x = (u,v), A = (A, B) and restate the single block form

in F(x) st.Ax=1b (3)

» Define the Lagrangian
L(x,\):=F(x)+{NAx—1b), (x,A)eX:=domF x A"
> Saddle-point (X,\) € X :
LENSLENSL(xA) V(x,\)eX
» Monotone inclusion

0e MZ,N), M(x,\) = (aF(X) t ATA)

b— Ax



Applications

Many variational /optimization problems are related to (1)/(2)/(3):

» Image processing

- Image denoising: TV-based model, ROF
- Image deconvolution

» Dynamical optimal transport/Benamou—Brenier problem
> Sparse regression: Lasso, least absolute deviation (LAD)
> ...



Existing (Lagrangian-based) methods

» Augmented Lagrangian method (ALM) for (3):

Xpp1 = argmin L, (x, \g), Ag+1 = \p + 0(Axpe1 — D)

with £, (x, ) == L(x,\) + 0/2||Ax — b]|*, o >0.

- Hestenes (1969) and Powell (1969)

- Dual formulation = Proximal point algorithm (Rockafellar)
- Uzawa method

- Not easy to update xp+1 = (Uk+1, Unt1)



Existing (Lagrangian-based) methods

» Augmented Lagrangian method (ALM) for (3):

X1 = argmin L, (x, A\g), Apr1 = Mg + 0(Axpp1 — b)

with £, (x, ) == L(x,\) + 0/2||Ax — b]|*, o >0.

- Hestenes (1969) and Powell (1969)

- Dual formulation = Proximal point algorithm (Rockafellar)
- Uzawa method

- Not easy to update xp+1 = (Uk+1, Unt1)

» Alternating direction method of multipliers (ADMM):

ug+1 = argmin L, (u, vg, Ag)
u

. Decouple u and v
Vg1 = argmin L, (ugt1, v, Ak)
v

/\k+1 =\ + O'(Auk+1 + ka+1 — b)

- Numerical solution of PDEs from mechanics, physics and differential
geometry (Glowinski, 1976/2014)



Popular application to image processing, statistical learning, data
mining (Boyd et al., Found Trends Mach Learn, 2010)

Successive computation, similar with Alternating Direction Method
(ADM) and Gauss-Seidel iteration

Dual formulation = DRSM

Convergence rate:

0(1/Vk), O(1/k)(Ergodic), O(1/k*)(us + g > 0, Ergodic)
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Popular application to image processing, statistical learning, data
mining (Boyd et al., Found Trends Mach Learn, 2010)

Successive computation, similar with Alternating Direction Method
(ADM) and Gauss-Seidel iteration

Dual formulation = DRSM

Convergence rate:

0(1/Vk), O(1/k)(Ergodic), O(1/k*)(us + g > 0, Ergodic)

> “Ergodic” means average of historical iterates:

k k
Xy = E X, E a; =1
i—1 i—1

» Primal-dual solvers for (2):

Arrow—Huricz, PDHG (Zhu and Chan, 2008)
Chambolle-Pock’s method (JMIV, 2011)
Tight connection with ADMM

Ergodic convergence rate O(1/k)



Acceleration and nonergodic rate

» For unconstrained problem: min f(z

)
{0(1/k) =0 . O(1/k%) py =0
O(e—k/cond(f)) pg >0 O(e’k/m) py >0
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- Ouyang et al. (SIIS, 2015): O (k% + @) (mixed-type)



Acceleration and nonergodic rate

» For unconstrained problem: min f(z)

{0(1/k) p=0_ [OUR) v
O(e—k/cond(f)) fbf >0 O(@ik/m) Ky >0

» Why nonergodic?
Ensure sparsity or low-rankness; see Li and Lin (JSC,2019),
Tran-Dinh and Zhu (SIOPT, 2020)

» For problem (1), accelerated ADMM with nonergodic rate:
e For up=pg=0
- Li and Lin (JSC, 2017): O(1/k)
- Ouyang et al. (SIIS, 2015): O (k% + @) (mixed-type)

e For s+ pg > 0: O(l/kQ)
- Tran-Dinh et al.(SIOPT, 2020): semi-ergodic rate
- Sabach and Teboulle (SIOPT, 2022)
- Zhang et al. (arXiv:2206.05088, 2022)
- He et al. (arXiv:2310.16404, 2023)



Main contribution

» A continuous ODE-based framework:

- A family of accelerated ADMM from a systematic way
- A unified Lyapunov analysis approach
- Sharp mixed-type estimate and nonergodic rates

- Both convex (uy = pg = 0) and (partially) strongly convex
(ks + pg > 0)



Main contribution

» A continuous ODE-based framework:

- A family of accelerated ADMM from a systematic way
- A unified Lyapunov analysis approach
- Sharp mixed-type estimate and nonergodic rates

- Both convex (uy = pg = 0) and (partially) strongly convex
(ks + pg > 0)

» Applications to sparse regression: fast nonergodic convergence
and sparsity maintaining
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PDHG and CP

» PDHG/Arrow—Hurwicz algorithm 3

. 1
X1 = argmin £(x, Ag) + o llx — xx||?

X

1
Apy1 = argmax L£(xp11,A) — =— ||A — M|
A 2T

3M. Zhu and T. F. Chan. An efficient primal-dual hybrid gradient algorithm for total variation image
restoration. CAM Report 08-34, 2008.
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3M. Zhu and T. F. Chan. An efficient primal-dual hybrid gradient algorithm for total variation image
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I —7AT
- 0€ S[zpy1 — zi)] + TM(2111), S = ( T >
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Primal-dual flow

» Rewriting CP method as a semi-implicit discretization

Xp+1 — Xk
T
Ak+1 — Ak

€ — OxL(Xpy1, k)

. = VaL(Xpp1+Xpr1 — Xiy Ajg1)
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6L. A primal-dual flow for affine constrained convex optimization. ESAIM:COCV (2022)
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Primal-dual flow

» Rewriting CP method as a semi-implicit discretization

M € — OxL(Xk+1, Ak)
A - A
kHTik = VaL(Xkg1+Xpr1 — Xi, Apy1)

» We proposed a novel primal-dual flow °

vx' € — 0y L(x, )

PD FI
ON = Vi L(x+x,\) ( ow)

» Scaling parameters ' = —6 and v = u — vy with = pp

» Exponential decay of the Lyapunov function

~ =N =R 0 ~
E(x,N) 1= Lx,X) = LEN) + 2 [x =% + Z A = AP

6L. A primal-dual flow for affine constrained convex optimization. ESAIM:COCV (2022)
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» Main idea: Combining primal-dual form with acceleration
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Accelerated primal-dual flow

» Main idea: Combining primal-dual form with acceleration
» Nesterov accelerated gradient flow for min F(x) 7
vx" 4+ (p+v)x' + 0F(x) 30 (NAG flow)

» Combining NAG-flow with (PD Flow) gives

vx" + (1 +7)x" € — 0xL(x,\) [Accelerated primal descent]
O\ = ViL(x+x',)\) [Dual ascent]

» Introduce x = x-+x’ to obtain

X =x—x
vx' € — 0:L(x,\) + p(x — X) (APD Flow)
ON = VAL(x,\)

- First-order system is convenient for discretization and analysis than
second-order ODE

7L. and L. Chen. From differential equation solvers to accelerated first-order methods for convex optimization.
MAPR, 195: 735-781, 2022.
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Two block APD flow

» Recall that p = pp = min{us, pgy}, and =0 when gy, =0

> For two block problem (1), we introduce block diagonal scaling
parameters:

v = I'=diag(vI[,B8I), p = p=diag(usl,p,l)

'=p-—y=1"=p-T

» Two block APD flow

X =x—-x
I'x’ € — 0:L(x,\) + p(x — X) (2block-APD Flow)
ON = VAL(x, )

» Exponential decay of

—~ N 1, R 0 —~
E(x,\) == L(x,\) — L(X,\) + 3 % —%|I7 + 5|\A =—\s
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A discretization template

» Denote the step size a, > 0 and consider
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(677
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k
Akl — Ak _
0, 28 — Az — b

g
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A discretization template

» Denote the step size a, > 0 and consider

Xk+1 — Xk _
—— = Xk+1 — Xk+1
af
Xpt+1 — Xk < _
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k
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O = = Az — b
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» Parameter equation
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———=p T, ————— =01
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» N\, is crucial to decouple x;1 and Xpy1:

® M\it1 = Apy1: fully coupled = nonlinear & nonsmooth X
® Moot~ (Upt1, Upy1): weakly coupled = splitting ¢/
® \ii1 ~ (Ups1, Ups1): weakly coupled = splitting ¢
e \pi1 ~ (ug, vg): decoupled == splitting + parallelization v/
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parameter sequence Ty, 7f,k, Mg, k-
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» Controllable gap
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» Optimization algorithm (informal)
Uk+1 = argmin {Egk(u, Uky Ak) + 777”71; [Ju — ﬂkHQ}
U 20ék
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Vg1 = proxmg(vk — 1B \k)
Vb1 = Upt1 + (Vkp1 — Op) /o
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with last iterate wuy, vg, Ak, intermediate sequence \i, Ak, Uk, U and
parameter sequence Ty, 7f,k, Mg, k-

> Sequential inner solvers: prox;, 4.4 and prox,
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> Take the step size o? || B||> = 60185

» Convergence rate

1Bl |IB]I?
Ex+ Ri < mm{T, e

where

-~

£(uk, Vk, )\) - £(ﬁ,@, Ak)

Ry :

Lagrange gap

By = || Aug + Bu, — b|| + ‘F(uk, u) — ﬁ]
—_———

| —

Feasibility violation Objective residual

» When B=—-1,b=0,

0< P(ux) — P(u) S min{

~

» Linearization of f = fi + f»

B B||? L k
min ” H N ” H + min 7/( ,exp | —— ﬂ
VBok  pgk? Yok? 4\ Ly




More schemes

» The symmetric choice 5\k+1 =M+ ak/Gk(Aak + BUj41 — b)
- Sequential inner solvers: prox, ., z.p and prox;:

A jap?
min{ —,
k [,Lfk2

- Linearization of f = fi + f»

A L A2 k
min { 1Al I 1Al toxp-F bBf
VAok  vok? pyk? 4\ Ly




More schemes

» The symmetric choice 5\k+1 =M+ ak/Gk(Aak + BUj41 — b)
- Sequential inner solvers: prox, ., z.p and prox;:

A jap?
min{ —,
k [,Lfk2

- Linearization of f = fi + f»
A L A2 k
min{ Al + / 5 141 + exp <_7 ﬂ)}
VAok | vok? ugk? Vb

» The second choice A\ 1 = A\ + ap/0r( Ay, + By, — b)
- Parallel inner solvers: prox; and prox,

_fuBloBN? Al nAp?
min ¢ —, 4+ min ¢ —,
k ,ung k [_Lsz

- Linearization of f = fi + f5

B B||? A L A2 k
min{ 1Bl ’ 1Bl }+min{ Al b 1Al +exp (_7 ﬂ)}
VBok  pgk? Vok  vok? upk? 4\ Ly

» All can be extended to g = g1 + ¢




Numerical Results



LAD regression

Consider the least absolute deviation (LAD) regression problem

min P(z) := f(z) + | Az — bl (4)

where A € R™*™ and b € R™ are given data with m < n, and f
is a regularization function. Consider two types of regularizer:

- Case I: f(z) = A||z||;,

- Case 2 f(z) = A|lally + pr/2 o]

We generate the matrix A from the standard normal distribution
and set b = Az + e, where 27 is sparse and e is a Gaussian noise.
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1: LAD regression, Case 1, with (m, n) = (400, 4000) and sparsity 10%.

No worse (or comparable) convergence but good sparsity
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2: LAD regression, Case 2, with (m, n) = (400,4000) and sparsity 10%.

No worse (or comparable) convergence but good sparsity
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Thanks for your listening!

Any questions?
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