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Problem setting

▶ Equality constrained separable minimization

min
u∈U ,v∈V

F(u, v) := f (u) + g(v) s.t.Au + Bv = b (1)

Assumptions:
- U , V, Λ: Hilbert spaces with inner product ⟨·, ·⟩ 1

- A(B) : U(V) → Λ: bounded linear operators, b ∈ Λ

- f (g) : U(V) → (−∞,+∞]: CCP 2 with constants µf (µg) ≥ 0

- Consistent condition: b ∈ A dom f + B dom g

▶ Composite convex minimization (b = 0, B = −I )

min
u∈U

P(u) := f (u) + g(Au) (2)

1When no confusion arises, we use the same bracket ⟨·, ·⟩ for the inner products on U, V and Λ.
2CCP means closed, convex and proper.



Preliminary

▶ Introduce x = (u, v),A = (A,B) and restate the single block form

min
x∈U×V

F(x) s.t.Ax = b (3)

▶ Define the Lagrangian

L(x, λ) := F(x) + ⟨λ,Ax − b⟩ , (x, λ) ∈ X := dom F × Λ∗.

▶ Saddle-point (x̂, λ̂) ∈ X :

L(x̂, λ) ≤ L(x̂, λ̂) ≤ L(x, λ̂) ∀ (x, λ) ∈ X

▶ Monotone inclusion

0 ∈ M (x̂, λ̂), M (x, λ) =
(
∂F(x) + A⊤λ

b − Ax

)



Applications

Many variational/optimization problems are related to (1)/(2)/(3):

▶ Image processing
- Image denoising: TV-based model, ROF
- Image deconvolution
- ...

▶ Dynamical optimal transport/Benamou–Brenier problem
▶ Sparse regression: Lasso, least absolute deviation (LAD)
▶ ...



Existing (Lagrangian-based) methods

▶ Augmented Lagrangian method (ALM) for (3):

xk+1 = argmin
x

Lσ(x, λk), λk+1 = λk + σ(Axk+1 − b)

with Lσ(x, λ) := L(x, λ) + σ/2 ∥Ax − b∥2 , σ > 0.
- Hestenes (1969) and Powell (1969)
- Dual formulation = Proximal point algorithm (Rockafellar)
- Uzawa method
- Not easy to update xk+1 = (uk+1, vk+1)

▶ Alternating direction method of multipliers (ADMM):

uk+1 = argmin
u

Lσ(u, vk , λk)

vk+1 = argmin
v

Lσ(uk+1, v, λk)

Decouple u and v

λk+1 = λk + σ(Auk+1 + Bvk+1 − b)

- Numerical solution of PDEs from mechanics, physics and differential
geometry (Glowinski, 1976/2014)
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- Popular application to image processing, statistical learning, data
mining (Boyd et al., Found Trends Mach Learn, 2010)

- Successive computation, similar with Alternating Direction Method
(ADM) and Gauss-Seidel iteration

- Dual formulation = DRSM
- Convergence rate:

O(1/
√

k), O(1/k)(Ergodic), O(1/k2)(µf + µg > 0,Ergodic)

▶ “Ergodic” means average of historical iterates:

x̄k =
k∑

i=1

αixi ,
k∑

i=1

αi = 1

▶ Primal-dual solvers for (2):
- Arrow–Huricz, PDHG (Zhu and Chan, 2008)
- Chambolle–Pock’s method (JMIV, 2011)
- Tight connection with ADMM
- Ergodic convergence rate O(1/k)
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Acceleration and nonergodic rate
▶ For unconstrained problem: min f (x){O(1/k) µf = 0

O(e−k/cond(f )) µf > 0
=⇒

{
O(1/k2) µf = 0

O(e−k/
√

cond(f )) µf > 0

▶ Why nonergodic?
Ensure sparsity or low-rankness; see Li and Lin (JSC,2019),
Tran-Dinh and Zhu (SIOPT, 2020)

▶ For problem (1), accelerated ADMM with nonergodic rate:
• For µf = µg = 0

- Li and Lin (JSC, 2017): O(1/k)
- Ouyang et al. (SIIS, 2015): O

(
L
k2 + ∥A∥

k

)
(mixed-type)

• For µf + µg > 0: O(1/k2)
- Tran-Dinh et al.(SIOPT, 2020): semi-ergodic rate
- Sabach and Teboulle (SIOPT, 2022)
- Zhang et al. (arXiv:2206.05088, 2022)
- He et al. (arXiv:2310.16404, 2023)
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Main contribution

▶ A continuous ODE-based framework:
- A family of accelerated ADMM from a systematic way
- A unified Lyapunov analysis approach
- Sharp mixed-type estimate and nonergodic rates
- Both convex (µf = µg = 0) and (partially) strongly convex

(µf + µg > 0)

▶ Applications to sparse regression: fast nonergodic convergence
and sparsity maintaining
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PDHG and CP
▶ PDHG/Arrow–Hurwicz algorithm 3

xk+1 = argmin
x

L(x, λk) +
1

2τ
∥x − xk∥2

λk+1 = argmax
λ

L(xk+1, λ)−
1

2τ
∥λ− λk∥2

- 0 ∈ S [zk+1 − zk)] + τM (zk+1), S =

(
I −τA⊤

O I

)
- Preconditioned PPA without symmetric property
- Asymmetric⇒Diverge! Counter examples in He et al.JIMV (2022)

▶ Chambolle-Pock (CP) method

xk+1 = argmin
x

L(x, λk) +
1

2τ
∥x − xk∥2

λk+1 = argmax
λ

L(xk+1+xk+1 − xk , λ)−
1

2τ
∥λ− λk∥2

- 0 ∈ S [zk+1 − zk)] + τM (zk+1), S =

(
I −τA⊤

−τA I

)

3M. Zhu and T. F. Chan. An efficient primal-dual hybrid gradient algorithm for total variation image
restoration. CAM Report 08-34, 2008.
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4B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a saddle-point problem: from
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5A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to
imaging. JMIV, 40(1):120-145, 2011.
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Primal-dual flow

▶ Rewriting CP method as a semi-implicit discretization

xk+1 − xk

τ
∈ − ∂xL(xk+1, λk)

λk+1 − λk

τ
= ∇λL(xk+1+xk+1 − xk , λk+1)

▶ We proposed a novel primal-dual flow

γx′ ∈ − ∂xL(x, λ)
θλ′ = ∇λL(x+x′, λ)

(PD Flow)

▶ Scaling parameters θ′ = −θ and γ′ = µ− γ with µ = µF

▶ Exponential decay of the Lyapunov function

E(x, λ) := L(x, λ̂)− L(x̂, λ) + γ

2
∥x − x̂∥2 + θ

2
∥λ− λ̂∥2
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Accelerated primal-dual flow

▶ Main idea: Combining primal-dual form with acceleration

▶ Nesterov accelerated gradient flow for min F(x) 7

γx′′ + (µ+ γ)x′ + ∂F(x) ∋ 0 (NAG flow)

▶ Combining NAG-flow with (PD Flow) gives
γx′′ + (µ+ γ)x′ ∈ − ∂xL(x, λ)

θλ′ = ∇λL(x+x′, λ) [Dual ascent]

▶ Introduce x̄ = x+x′ to obtain

x′ = x̄ − x
γx̄′ ∈ − ∂xL(x, λ) + µ(x − x̄)
θλ′ = ∇λL(x̄, λ)

(APD Flow)

- First-order system is convenient for discretization and analysis than
second-order ODE

7L. and L. Chen. From differential equation solvers to accelerated first-order methods for convex optimization.
MAPR, 195: 735–781, 2022.
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7L. and L. Chen. From differential equation solvers to accelerated first-order methods for convex optimization.
MAPR, 195: 735–781, 2022.



Two block APD flow

▶ Recall that µ = µF = min{µf , µg}, and µ = 0 when µfµg = 0

▶ For two block problem (1), we introduce block diagonal scaling
parameters:

γ =⇒ Γ = diag (γI , βI ) , µ =⇒ µ = diag (µf I , µgI )

γ′ = µ− γ =⇒ Γ′ = µ− Γ

▶ Two block APD flow

x′ = x̄ − x
Γx̄′ ∈ − ∂xL(x, λ) + µ(x − x̄)
θλ′ = ∇λL(x̄, λ)

(2block-APD Flow)

▶ Exponential decay of

E(x, λ) := L(x, λ̂)− L(x̂, λ) + 1

2
∥x̄ − x̂∥2Γ +

θ

2
∥λ− λ̂∥2
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A discretization template

▶ Denote the step size αk > 0 and consider

xk+1 − xk

αk
= x̄k+1 − xk+1

Γk
x̄k+1 − x̄k

αk
∈ − ∂xL(xk+1, λ̄k+1) + µ(xk+1 − x̄k+1)

θk
λk+1 − λk

αk
= Ax̄k+1 − b

▶ Parameter equation

Γk+1 − Γk

αk
= µ− Γk+1,

θk+1 − θk

αk
= −θk+1

▶ λ̄k+1 is crucial to decouple xk+1 and x̄k+1:

• λ̄k+1 = λk+1: fully coupled =⇒ nonlinear & nonsmooth 8
• λ̄k+1 ∼ (uk+1, ūk+1): weakly coupled =⇒ splitting 4
• λ̄k+1 ∼ (vk+1, v̄k+1): weakly coupled =⇒ splitting 4
• λ̄k+1 ∼ (uk , vk): decoupled =⇒ splitting + parallelization 4
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• λ̄k+1 ∼ (uk+1, ūk+1): weakly coupled =⇒ splitting 4
• λ̄k+1 ∼ (vk+1, v̄k+1): weakly coupled =⇒ splitting 4

• λ̄k+1 ∼ (uk , vk): decoupled =⇒ splitting + parallelization 4



A discretization template

▶ Denote the step size αk > 0 and consider

xk+1 − xk

αk
= x̄k+1 − xk+1

Γk
x̄k+1 − x̄k

αk
∈ − ∂xL(xk+1, λ̄k+1) + µ(xk+1 − x̄k+1)

θk
λk+1 − λk

αk
= Ax̄k+1 − b

▶ Parameter equation

Γk+1 − Γk

αk
= µ− Γk+1,

θk+1 − θk

αk
= −θk+1

▶ λ̄k+1 is crucial to decouple xk+1 and x̄k+1:

• λ̄k+1 = λk+1: fully coupled =⇒ nonlinear & nonsmooth 8
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One iteration analysis

Discrete Lyapunov function (From the continuous one)

Ek := L(xk , λ̂)− L(x̂, λk) +
1

2
∥x̄k − x̂∥2Γk

+
θk

2
∥λk − λ̂∥2

Lemma 1

Ek+1 − Ek ≤− αkEk+1 +
θk

2

∥∥λk+1 − λ̄k+1

∥∥2 − 1

2
∥x̄k+1 − x̄k∥2Γk

▶ λ̄k+1 is also crucial for convergence:
• λ̄k+1 − λk+1 = 0: perfect 4
• λ̄k+1 − λk+1 ∼ (ūk+1 − ūk): controllable 3
• λ̄k+1 − λk+1 ∼ (v̄k+1 − v̄k): controllable 3
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The first IMEX scheme

▶ The implicit-explicit choice λ̄k+1 = λk + αk/θk(Aūk+1 + Bv̄k − b)

▶ Controllable gap

λk+1 − λ̄k+1 = αk/θkA(ūk+1 − ūk)

▶ Optimization algorithm (informal)

uk+1 = argmin
u

{
Lσk (u, vk , λ̂k) +

ηf ,k

2α2
k
∥u − ũk∥2

}
ūk+1 = uk+1 + (uk+1 − uk)/αk

vk+1 = proxτkg(ṽk − τkB∗λ̄k)

v̄k+1 = vk+1 + (vk+1 − vk)/αk

λk+1 = λk + αk/θk(Aūk+1 + Bv̄k+1 − b)

(Fast-ADMM-1)

with last iterate uk , vk , λk , intermediate sequence λ̂k , λ̄k , ũk , ṽk and
parameter sequence τk , ηf ,k , ηg,k .

▶ Sequential inner solvers: proxf+A∗A and proxg
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ūk+1 = uk+1 + (uk+1 − uk)/αk

vk+1 = proxτkg(ṽk − τkB∗λ̄k)

v̄k+1 = vk+1 + (vk+1 − vk)/αk

λk+1 = λk + αk/θk(Aūk+1 + Bv̄k+1 − b)

(Fast-ADMM-1)

with last iterate uk , vk , λk , intermediate sequence λ̂k , λ̄k , ũk , ṽk and
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▶ Controllable gap

λk+1 − λ̄k+1 = αk/θkA(ūk+1 − ūk)
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▶ Take the step size α2
k ∥B∥2 = θkβk

▶ Convergence rate

Ek + Rk ≲ min
{
∥B∥

k ,
∥B∥2

µgk2

}
where

Rk := L(uk , vk , λ̂)− L(û, v̂, λk)︸ ︷︷ ︸
Lagrange gap

Ek := ∥Auk + Bvk − b∥︸ ︷︷ ︸
Feasibility violation

+
∣∣∣F(uk , vk)− F̂

∣∣∣︸ ︷︷ ︸
Objective residual

▶ When B = −I , b = 0,

0 ≤ P(uk)− P(û) ≲ min
{
∥B∥

k ,
∥B∥2

µgk2

}
▶ Linearization of f = f1 + f2

min
{

∥B∥
√

β0k
,
∥B∥2

µgk2

}
+ min

{
Lf

γ0k2
, exp

(
−

k
4

√
µf

Lf

)}
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▶ Take the step size α2
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More schemes
▶ The symmetric choice λ̄k+1 = λk + αk/θk(Aūk + Bv̄k+1 − b)

- Sequential inner solvers: proxg+B∗B and proxf :

min
{

∥A∥
k

,
∥A∥2

µf k2

}

- Linearization of f = f1 + f2

min
{

∥A∥
√
γ0k

+
Lf

γ0k2
,

∥A∥2

µf k2
+ exp

(
−

k
4

√
µf

Lf

)}

▶ The second choice λ̄k+1 = λk + αk/θk(Aūk + Bv̄k − b)
- Parallel inner solvers: proxf and proxg

min
{

∥B∥
k

,
∥B∥2

µgk2

}
+ min

{
∥A∥

k
,

∥A∥2

µf k2

}

- Linearization of f = f1 + f2

min
{

∥B∥
√
β0k

,
∥B∥2

µgk2

}
+ min

{
∥A∥
√
γ0k

+
Lf

γ0k2
,
∥A∥2

µf k2
+ exp

(
−

k
4

√
µf

Lf

)}
.

▶ All can be extended to g = g1 + g2
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▶ The symmetric choice λ̄k+1 = λk + αk/θk(Aūk + Bv̄k+1 − b)

- Sequential inner solvers: proxg+B∗B and proxf :

min
{

∥A∥
k

,
∥A∥2

µf k2

}

- Linearization of f = f1 + f2

min
{

∥A∥
√
γ0k

+
Lf

γ0k2
,

∥A∥2

µf k2
+ exp

(
−

k
4

√
µf

Lf

)}

▶ The second choice λ̄k+1 = λk + αk/θk(Aūk + Bv̄k − b)
- Parallel inner solvers: proxf and proxg

min
{

∥B∥
k

,
∥B∥2

µgk2

}
+ min

{
∥A∥

k
,

∥A∥2

µf k2

}

- Linearization of f = f1 + f2

min
{

∥B∥
√
β0k

,
∥B∥2

µgk2

}
+ min

{
∥A∥
√
γ0k

+
Lf

γ0k2
,
∥A∥2

µf k2
+ exp

(
−

k
4

√
µf

Lf

)}
.

▶ All can be extended to g = g1 + g2
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LAD regression

Consider the least absolute deviation (LAD) regression problem

min
x∈Rn

P(x) := f (x) + ∥Ax − b∥1 , (4)

where A ∈ Rm×n and b ∈ Rm are given data with m ≪ n, and f
is a regularization function. Consider two types of regularizer:

- Case 1: f (x) = λ ∥x∥1,
- Case 2: f (x) = λ ∥x∥1 + µf /2 ∥x∥2.

We generate the matrix A from the standard normal distribution
and set b = Ax# + e, where x# is sparse and e is a Gaussian noise.
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图 1: LAD regression, Case 1, with (m,n) = (400, 4000) and sparsity 10%.

No worse (or comparable) convergence but good sparsity
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图 2: LAD regression, Case 2, with (m,n) = (400, 4000) and sparsity 10%.

No worse (or comparable) convergence but good sparsity
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Thanks for your listening!

Any questions?
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