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摘 要

本报告主要关注一类最优输运问题的高效求解算法。首先，我们将引

入一些原始-对偶流模型并为其设计相应的、具有指数衰减性质的李亚普洛
夫函数。接着，我们利用连续模型的时间离散格式来得到原始对偶算法，并

证明 (超) 线性或次线性收敛率。此外，借助于问题本身的特殊结构，我们
可以得到内问题的精确，或结合代数多重网格法与半光滑牛顿迭代进行快

速求解。最后，我们会提供一些数值试验以验证所提出的算法的高效性。

关键词: 最优传输; 蒙日–康托洛维奇问题; 线性规划; 原始-对偶动力系统;
李雅普诺夫函数; 时间离散; 半光滑牛顿; 代数多重网格



Abstract
In this report, we focus on efficient algorithms for solving a large class

of optimal transport-like problems. We will first introduce some primal-dual
flow models and equip them with proper Lyapunov functions that possess
exponential decay property. Then, based on time discretizations of the con-
tinuous dynamics, we obtain new primal-dual methods and prove the non-
ergodic ((super-)linear or sublinear)convergence rates. Besides, by exploring
the special structure, the inner problems of the proposed methods either
admit closed solution or can be solved by the semi-smooth Newton itera-
tion with algebraic multigrid method. Moreover, numerical experiments are
provided to validate the efficiency of our algorithms.

Keywords: Optimal transport; Monge–Kantorovich problem; Linear pro-
gramming; Primal-dual dynamics; Lyapunov function; Time discretization;
Semi-smooth Newton; Algebraic multigrid
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Chapter 1

Introduction

1.1. Optimal Transport
The optimal mass transport proposed by Monge, can be dated back to as

early as the 1780s. Later, Kantorovich [61] introduced a convex relaxation
of Monge’s original formulation and applied it to economics. Since then,
this topic attracted more attention，and it also played an increasing role in
imaging processing [57, 84, 93], machine learning [4, 34, 60] and statistics
[87, 97]. Here, we give a very brief introduction to two basic formulations
of optimal transport, and we refer to [3, 95, 101, 102] for comprehensive
theoretical investigations.

1.1.1. Monge’s problem

Given a source probability measure µ on X and a target measure ν on
Y , where X, Y ⊂ Rn are the underlying spaces. Monge’s problem aims to
find a transport map T : X → Y (cf.Fig. 1.1), that pushes µ forward to ν

and minimizes the total cost∫
X

c(x, T (x)) dµ(x),

where c : X × Y → R+ is called the cost function. Here, we say T pushes
µ forward to ν if T#µ = ν, namely ν(B) = µ(T−1(B)) for all measurable
subset B ⊂ Y .

1



Chapter 1. Introduction

T

x

µ

y

ν

Figure 1.1: The illustration of optimal mass transport.

1.1.2. Kantorovich relaxation

Instead of the transport map T , which might not even exists, Kan-
torovich suggests considering a set of probability measures over the product
space X × Y , with the marginal distributions on X and Y being µ and ν,
respectively. This is called the set of transport plans between µ and ν:

Π(µ, ν) := {π ∈ P(X × Y ) : σX#π = µ, σY #π = ν} ,

where P(X×Y ) denotes the probability space over X×Y , and σX : X×Y →
Y and σY : X × Y → Y are projections:

σX(x, y) = x, σY (x, y) = y ∀ (x, y) ∈ X × Y.

This leads to the Monge–Kantorovich problem: find π ∈ Π(µ, ν) that mini-
mizes the total cost ∫ ∫

X×Y

c(x, y) dπ(x, y). (1.1)

µ

ν π

µ

ν π

µ

ν π

Figure 1.2: Examples of transport plan for discrete case (left), semi-discrete case
(medium) and continuous case (right).
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Chapter 1. Introduction

1.1.3. Transport-like Problems

In addition to the two standard problems in the previous section, we list
several typical transport-like programmings arising from either mathemati-
cal extensions or practical applications. Those problems share the common
feature of marginal constraint and we will treat them in a unified way, by
introducing a generalized formulation.

Discrete optimal transport

In the setting of discrete optimal mass transportation [17, 61], problem
(1.1) becomes a standard linear programming (LP):

min
X∈B(µ,ν)

⟨C,X⟩ :=
m∑
i=1

n∑
j=1

CijXij, (1.2)

where C ∈ Rm×n
+ is the cost matrix, µ ∈ Rn

+ and ν ∈ Rm
+ satisfy the mass

conservation: 1⊤
nµ = 1⊤

mν, and

B(µ, ν) :=
{
X ∈ Rm×n

+ : X⊤1m = µ, X1n = ν
}

denotes the transportation polytope, with 1n(1m) ∈ Rn(Rm) being the vector
of all ones. According to [19, Chapter 8], B(µ, ν) is nonempty, convex and
bounded. It follows immediately from [11, Corollary 2.3] that (1.2) admits
at least one solution.

When m = n and µ = ν = 1n, the transportation polytope coin-
cides with the Birkhoff polytope Bn := {X ∈ Rn×n

+ : X⊤1n = 1n, X1n =

1n}, which consists of all n-by-n doubly stochastic matrices. The celebrate
Birkhoff–Von-Neumann theorem (cf. [85, Theorem 17]) states that Bn is the
convex hull of the set of all permutation matrices. Therefore, it has fre-
quently been used to relax some combinatorial or nonconvex problems [45].
In particular, the optimal transport (1.2) is exactly the convex relaxation of
the linear assignment problem [20].

3



Chapter 1. Introduction

Birkhoff projection

Given any Φ ∈ Rn×n
+ , the Birkhoff projection in terms of the Frobenius

norm ∥·∥F considered in [62, 73] reads as

min
X∈Bn

1

2
∥X − Φ∥2F , (1.3)

which actually seeks the nearest doubly matrix of Φ and usually arises from
the relaxations of some nonconvex programmings [45, 58, 75]. In numerical
simulation for circuit networks [6], we have to fix some components:

Xij = Φij, ∀ i ∈ I, j ∈ J , (1.4)

where I, J ⊂ {1, 2, · · · , n} are two given index sets, and this leads to the
problem of finding the best approximation in the Birkhoff polytope Bn with
prescribed entry constraint [5, 48].

Capacity constrained optimal transport

The optimal transportation with capacity constraints explored recently
by Korman and McCann [63], imposes additional restriction X ≤ Γ to the
classical optimal transport (1.2), i.e.,

min
X∈BΓ(µ,ν)

⟨C,X⟩ , (1.5)

where BΓ(µ, ν) := {X ∈ B(µ, ν) : X ≤ Γ} and Γ ∈ Rm×n
+ describes the ca-

pacity limitation. In other words, Γij denotes the maximal mass that can be
transferred from i to j. Assume BΓ(µ, ν) is nonempty, then it is a convex
subset of the transportation polytope B(µ, ν) and invoking [11, Corollary
2.3] again implies the existence of optimal solution. Capacity constrained
optimal transport possesses interesting saturation phenomenon (bang-bang
characterization) and symmetry property; see [64]. For theoretical study of
the dual problem of (1.5), we refer to [65, 66].

Partial optimal transport

In standard optimal transport (1.2), the marginal distributions µ and
ν are required to have the same mass. Mathematically, this is quite re-
strictive and practically, the unbalanced case 1⊤

nµ ̸= 1⊤
mν stems from the

4



Chapter 1. Introduction

positive-unlabeled learning [23] and the representation of dynamic meshes
for controlling the volume of objects with free boundaries [69].

This leads to a problem called partial optimal transport [9, 30]. More
precisely, we aim to transport only a given fraction of mass a ∈ (0, amax]

where amax := min{1⊤
nµ, 1⊤

mν}, and minimize the total cost

min
X∈Rm×n

+

⟨C,X⟩ s.t. X⊤1m ≤ µ, X1n ≤ ν, 1⊤
mX1n = a. (1.6)

Clearly, when a = µ⊤1n = ν⊤1m, this amounts to the classical optimal trans-
port (1.2). Well-posedness of (1.6) (in the continuous setting) was established
in [21] and extended by Figalli [44].

1.1.4. Generalized transportation problem

Clearly, the transport plan X belongs to a box region K := {X ∈ Rm×n :

Θ ≤ X ≤ Γ}, where Θ, Γ ∈ Rm×n with 0 ≤ Θij < ∞ and Θij ≤ Γij ≤ ∞.
Introduce two slack variables y ∈ Rn and z ∈ Rm, together with their
feasible regions Y = Rn

+ (or {0}) and Z = Rm
+ (or {0}). This allows us

to include the unbalanced case 1⊤
nµ ̸= 1⊤

mν. We also impose the total mass
constraint π(X) = a, where a ∈ (0,min{1⊤

nµ, 1⊤
mν}] and π : Rm×n → Rl is

a linear operator.
Then the generalized transportation problem reads as follows

min
(X,y,z)∈Ω

H(X) s.t. X⊤1m + y = µ, X1n + z = ν, π(X) = a, (1.7)

where Ω := K × Y × Z and H(X) := σ/2 ∥X − Φ∥2F + ⟨C,X⟩ with σ ≥ 0

and Φ ∈ Rm×n
+ . This generic formulation contains all problems mentioned

previously in Section 1.1.3, and also include other transport-like problems
such as capacity constrained optimal transport [63] and the machine loading
problem [43].

As usual, denote by vec(×) the vector expanded by the matrix × by
column. Let f(x) := σ/2 ∥x− ϕ∥2 + c⊤x with c = vec(C) and ϕ = vec(Φ),
and introduce X := {x ∈ Rmn : θi ≤ xi ≤ γi, 1 ≤ i ≤ mn} with θ = vec(Θ)

and γ = vec(Γ) . Suppose the linear operator π admits a matrix represen-
tation Π ∈ Rl×mn such that π(X) = Πvec(X) for all X ∈ Rm×n. Then, we

5



Chapter 1. Introduction

rearrange (1.7) as a standard affine constrained optimization problem:

min
(x,y,z)∈Σ

f(x) s.t. Gx+ IY y + IZz = b, (1.8)

where Σ := X × Y × Z and

G :=

(
T

Π

)
, T :=

(
In ⊗ 1⊤m
1⊤n ⊗ Im

)
, IY :=


In

O

O

 , IZ :=


O

Im

O

 , b :=


µ

ν

a

 . (1.9)

1.2. Existing Methods

1.2.1. Entropy regularization

Entropy regularization, i.e., the logarithmic barrier function, can be used
to relax the nonnegativity restriction and provide an approximate optimiza-
tion problem that possesses some nice properties including strong convexity
of the primal form (which corresponds to the smoothness of the dual prob-
lem) and closed projection onto the marginal constraint.

The well-known Sinkhorn algorithm [35, 96] and its greedy adaptation,
called Greenhorn [2], are fixed-point iterations. Sinkhorn’s algorithm was
proved to converge linearly (cf.[85, Theorem 35]) but the rate is exponentially
degenerate with respect to the regularization parameter, and the theoretical
complexity bound O(n2/ϵ2) can be found in [38, 77]. Here, we mention
that the iterative Bregman projection with KL divergence [9] is equivalent
to Sinkhorn’s algorithm. By virtue of the smoothness of the dual problem,
accelerated mirror descent method has been proposed in [38, 77] and the
improved complexity is O(n2.5

√
lnn/ϵ). For more methods using entropy

regularization, we refer to [29, 46, 47, 50, 51, 103], and one can also consult
[8, 85, 89] on quite complete surveys about existing numerical methods.

It is worth noticing that, the solution to the entropy regularized prob-
lem exists uniquely, and it converges (exponentially) to an optimal transport
plan with maximal entropy among all the optimal plans, as the regularization
parameter vanishes; see [33] and [89, Proposition 4.1]. However, practically,
one cannot choose arbitrarily small parameters due to the round-off issue and

6



Chapter 1. Introduction

instability effect. That being said, the log-domain technique [30] helps en-
hance the numerical stability, and both vectorization and parallelization can
be applied to Sinkhorn’s algorithm. This makes it very popular in real appli-
cations, especially for computing Wasserstein distances between histograms.

The complexity of matrix-vector multiplication in each iteration of the
Sinkhorn algorithm is O(n2) for general cases. If the transport cost function
enjoys a separable structure with d blocks, then efficient implementation
achieves the reduced cost O(n1+1/d); see [89, Section 4.3]. More recently, for
translation invariance cost functions (for instance, the Euclidean distance)
that imply the cyclic property, Liao et al. [74] proposed an optimal O(n)

algorithm. Hence, to provide an approximate optimal transport plan with
moderate regularization parameter, entropy-based methods are efficient, es-
pecially for some cost functions with nice properties.

1.2.2. Classical LP solvers

On the other hand, augmented Lagrangian method (ALM) and alternat-
ing direction method of multipliers (ADMM) can be applied to transport-like
problems as well. By the celebrate stability result of linear inequality sys-
tem [83, 92], we have global linear convergence for ADMM [39]. For general
convex objectives, the provable nonergodic rate of many accelerated vari-
ants of (linearized) ALM and ADMM is O(1/k); see [71, 80, 81, 99, 111].
The method [111, Algorithm 1] possesses a faster sublinear rate O(1/k2)

but involves a subproblem that is a large scale quadratic programming (of
dimension n2) in terms of the primal variable.

There are also some second-order LP solvers such as the interior-point
method [68, 88] and semismooth Newton-based algorithms [5, 14, 72, 78].
These methods have to solve a symmetric positive definite (SPD) system per
iteration, and prevailing linear solvers are (sparse) Cholesky decomposition
and preconditioned conjugate gradient (PCG). However, we mention that the
corresponding SPD system might be nearly singular and ill-conditioned as the
problem size increases, and thus the number of iterations grows dramatically.
Therefore, efficient and robust linear solver plays an important role. We also

7



Chapter 1. Introduction

refer the readers to [1, 10, 89] for some combinatorial methods.

1.3. Notations
At the end of this part, let us make some conventions. The angle bracket

⟨·, ·⟩ stands for the usual Euclidean inner product of two vectors. For any
SPD matrix A ∈ Rn×n, ⟨·, ·⟩A := ⟨A·, ·⟩ means the A-inner product and
∥·∥A =

√
⟨·, ·⟩A is the induced A-norm. When no confusion arises, the A-

norm of a matrix B ∈ Rn×n is defined by

∥B∥A := sup
x∈Rn\{0}

∥Bx∥A
∥x∥A

.

Let f : Rn → R ∪ {+∞} be an extended real-valued function. We say
f is proper, closed and convex, if it satisfies the following:

• proper: its domain dom f := {x ∈ Rn : f(x) < ∞} is nonempty;

• closed (or lower semi-continuous): the level set {x ∈ Rn : f(x) ≤ t} is
closed for any t ∈ R;

• convex: for any θ ∈ [0, 1],

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀ x, y ∈ dom f.

The subdifferential of f at any x ∈ dom f is defined by

∂f(x) := {ξ ∈ Rn : f(y) ≥ f(x) + ⟨ξ, y − x⟩ ∀ y ∈ dom f} .

Given η > 0, define the proximal mapping proxηf : Rn → Rn of f by that

proxηf (x) := argmin
y∈Rn

{
f(y) +

1

2η
∥y − x∥2

}
∀ x ∈ Rn.

It is called µ-convex with parameter µ ≥ 0, if

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− µ

2
θ(1− θ) ∥x− y∥2 ,

for all x, y ∈ dom f and θ ∈ [0, 1]. This is also equivalent to

f(y) ≥ f(x) + ⟨ξ, y − x⟩+ µ

2
∥y − x∥2 ∀ ξ ∈ ∂f(x), (1.10)

8



Chapter 1. Introduction

for all x, y ∈ dom f . We say f is L-smooth if f ∈ C1(Rn) and ∇f is
L-Lipschitz continuous with 0 < L < ∞:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Rn.

The set of all L-smooth functions is denoted by C1
L(Rn), and we say f ∈

S1,1
µ,L(Rn) if f is L-smooth and µ-convex, with 0 ≤ µ ≤ L < ∞. In addition,

for any f ∈ S1,1
µ,L(Rn), we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 ∀ x, y ∈ Rn. (1.11)

Let O ⊂ Rn be a nonempty closed convex subset. Denote by δO : Rn →
{0,+∞} the indicator function of O, namely

δO(x) =

0 if x ∈ O,

+∞ else.

The subdifferential of δO at any x ∈ O is also written by NO(x). Besides, for
simplicity, we set projO(x) = proxηδO

(x) for all η > 0 and x ∈ Rn.

9



Chapter 2

Accelerated Primal-Dual Flow
Dynamics

In this chapter, we focus on the dynamical system approach for linearly
constrained convex optimization problem

min
x∈Rn

f(x) s.t. Ax = b, (2.1)

where A ∈ Rm×n, b ∈ Rm and f is a (smooth) convex function.
In Section 2.1, we present a novel primal-dual flow model, which is a

modification of the standard saddle-point dynamics and admits a suitable
Lyapunov function. Then in Section 2.2, we consider two extensions: one is
a hybridization of the primal-dual flow and the Nesterov accelerated gradient
flow [82]; the other is designed for the two-block case (2.28).

2.1. A Novel Primal-Dual Model
The constrained minimization (2.1) can be reformulated as a minimax

problem
min
x∈Rn

max
λ∈Rm

{L(x, λ) := f(x) + ⟨λ,Ax− b⟩} , (2.2)

where L(·, ·) is the Lagrangian function. The pair (x∗, λ∗) is called a saddle
point, i.e., the solution to (2.2), if it satisfies

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ) ∀ (x, λ) ∈ Rn × Rm.

10



Chapter 2. Accelerated Primal-Dual Flow Dynamics

Clearly, x∗ is a solution to (2.1), and λ∗ is the corresponding Lagrange mul-
tiplier.

Introduce

X =

(
x

λ

)
, and M(X) =

(
∇xL(x, λ)
−∇λL(x, λ)

)
=

(
∇f(x) + A⊤λ

b− Ax

)
.

Note that M is a maximally monotone operator:

⟨M(X)−M(Y ), X − Y ⟩ ≥ 0 ∀X, Y ∈ Rn × Rm, (2.3)

and M(X∗) = 0 for any saddle point X∗ = (x∗, λ∗).

2.1.1. The classical saddle-point dynamics

The classical saddle-point dynamics consists of two coupled flow maps:

x(t) : R+ → Rn and λ(t) : R+ → Rm,

which are governed by {
x′ +∇xL(x, λ) = 0, (2.4a)

λ′ −∇λL(x, λ) = 0. (2.4b)

Introduce X(t) = (x(t), λ(t)) and rewrite (2.4) as follows

X ′ +M(X) = 0.

If f ∈ C1
L(Rn), then according to [37, Section 4.2], there exists a unique

solution pair X = (x, λ) with

x ∈ C1(R+; Rn), and λ ∈ C1(R+; Rm).

Since M is maximally monotone and M(X∗) = 0, we have

1

2

d
dt ∥X −X∗∥2 = ⟨X ′, X −X∗⟩ = −⟨M(X), X −X∗⟩

(2.3)
≤ 0. (2.5)

This implies the distance between the trajectory X(t) and the saddle point
X∗ is decreasing (or nonincreasing). In addition, asymptotic convergence

11



Chapter 2. Accelerated Primal-Dual Flow Dynamics

results can be found in [28, 42]. However, in general cases, we know little
about the convergence rate of the continuous trajectory.

To study the convergence behavior of the saddle-point dynamics (2.4),
let us consider a simple but illustrative example

Lϵ(x, λ) =
ϵ

2
(x− 1)2 + λ(x− 2), x, λ ∈ R, (2.6)

with ϵ > 0. The unique saddle point is X∗
ϵ = (2,−ϵ). Solution trajectories

with ϵ = 1, 10−1 and 10−3 are displayed in Figs. 2.1, 2.2 and 2.3, respectively.
It can be observed that, as ϵ decreases, the problem becomes degenerate, and
the convergence is dramatically slow.
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Figure 2.1: Solution trajectories of the saddle-point dynamics (2.4) with ϵ = 1.
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Figure 2.2: Solution trajectories of the saddle-point dynamics (2.4) with ϵ = 10−1.
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Figure 2.3: Solution trajectories of the saddle-point dynamics (2.4) with ϵ = 10−3.

2.1.2. A discrete perspective

Consider a semi-implicit time discretization of (2.4):
xk+1 − xk

σ
+∇xL(xk+1, λk) = 0, (2.7a)

λk+1 − λk

τ
−∇λL(xk+1, λk+1) = 0, (2.7b)

where σ, τ > 0 denote the step sizes. A reformulation leads to the Arrow–
Hurwicz algorithm [112]

xk+1 = argmin
x∈Rn

{
L(x, λk) +

1

2σ
∥x− xk∥2

}
,

λk+1 = argmax
λ∈Rm

{
L(xk+1, λ)−

1

2τ
∥λ− λk∥2

}
.

(2.8)

Following [55] and [32, Chapter 8], we use the PPA-like interpretation to
demonstrate the lack of symmetry of the semi-implicit scheme (2.7). To do
this, we set

Q =

(
I/σ −A⊤

O I/τ

)
,

and notice the variational inequality characterization:

⟨Q(Xk+1 −Xk) +M(Xk+1), Z −Xk+1⟩ ≥ 0 ∀Z ∈ Rn × Rm.

13



Chapter 2. Accelerated Primal-Dual Flow Dynamics

Taking Z = X∗ and utilizing the fact: M(X∗) = 0, we find that
1

2
∥Xk+1 −X∗∥2Q − 1

2
∥Xk −X∗∥2Q

= ⟨Q(Xk+1 −Xk), Xk+1 −X∗⟩ − 1

2
∥Xk+1 −Xk∥2Q

+
1

2

〈
(Q⊤ −Q)(Xk+1 −X∗), Xk −X∗〉

≤ −⟨M(Xk+1), Xk+1 −X∗⟩︸ ︷︷ ︸
≤0 by (2.3)

−1

2
∥Xk+1 −Xk∥2Q

+
1

2

〈
(Q⊤ −Q)(Xk+1 −X∗), Xk −X∗〉

≤ − 1

2
∥Xk+1 −Xk∥2Q +

1

2

〈
(Q⊤ −Q)(Xk+1 −X∗), Xk −X∗〉.

(2.9)

As Q is not symmetric, it seems impossible to get rid of the cross term and
obtain the contraction estimate that corresponds to the discrete analogue
to (2.5). What’s even worse, the Arrow–Hurwicz algorithm (2.8), i.e., the
semi-implicit scheme (2.7), is not necessarily convergent [56].

On the other hand, let us focus on the primal-dual hybrid gradient
(PDHG) method [22]

xk+1 = argmin
x∈Rn

{
L(x, λk) +

1

2σ
∥x− xk∥2

}
,

λk+1 = argmax
λ∈Rm

{
L(2xk+1 − xk, λ)−

1

2τ
∥λ− λk∥2

}
,

(2.10)

which is also equivalent to
xk+1 − xk

σ
+∇xL(xk+1, λk) = 0, (2.11a)

λk+1 − λk

τ
−∇λL(xk+1 + xk+1 − xk, λk+1) = 0. (2.11b)

Compared with the previous scheme (2.7), there is an additional extrapo-
lation term xk+1 − xk in (2.11b). Moreover, applying the above PPA-like
framework to (2.10), one observes that the estimate (2.9) is improved to

1

2
∥Xk+1 −X∗∥2Q̂ − 1

2
∥Xk −X∗∥2Q̂ ≤ − 1

2
∥Xk+1 −Xk∥2Q̂ ,

where

Q̂ =

(
I/σ −A⊤

−A I/τ

)

14
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is a symmetrization of Q. In other words, the modification in (2.11b) brings
hidden symmetrization and improves the original algorithm.

2.1.3. The primal-dual flow

Assume f is µ-convex with µ ≥ 0 and introduce two time rescaling
factors γ and θ that satisfy

γ′ = µ− γ, θ′ = −θ, (2.12)

with positive initial conditions γ(0) = γ0 > 0 and θ(0) = θ0 > 0. It is not
hard to obtain the exact expressions:

γ(t) = µ+ (γ0 − µ)e−t, θ(t) = θ0e
−t. (2.13)
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Figure 2.4: Solution trajectories (left and medium) of the primal dynamics (2.14)
with ϵ = 1. The right one shows the convergence behaviors of the trajectories to
the saddle-point dynamics (2.4) and the primal dynamics (2.14).

Motivated by the modified discretization (2.11) that corresponds to the
PDHG method (2.10), we present a novel primal-dual flow model{

γx′ +∇xL(x, λ) = 0, (2.14a)

θλ′ −∇λL(x+ x′, λ) = 0, (2.14b)

with arbitrary initial conditions

λ(0) = λ0 ∈ Rm, x(0) = x0 ∈ Rn.
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The modification term x′ in (2.14b) is related to the extrapolation term
xk+1 − xk in (2.11b). Hopefully, our primal-dual flow (2.14) is more stable
and robust than the saddle-point dynamics (2.4). Numerical performances
on the singular problem (2.6) are provided in Figs. 2.4, 2.5 and 2.6.
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Figure 2.5: Solution trajectories (left and medium) of the primal dynamics (2.14)
with ϵ = 10−1. The right one shows the convergence behaviors of the trajectories
to the saddle-point dynamics (2.4) and the primal dynamics (2.14).
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Figure 2.6: Solution trajectories (left and medium) of the primal dynamics (2.14)
with ϵ = 10−3. The right one shows the convergence behaviors of the trajectories
to the saddle-point dynamics (2.4) and the primal dynamics (2.14).

Define a Lyapunov function

E(t) := L(x(t), λ∗)− L(x∗, λ(t)) + γ(t)

2
∥x(t)− x∗∥2 + θ(t)

2
∥λ(t)− λ∗∥2 . (2.15)

We shall prove that E(t) decays exponentially.
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Theorem 2.1.1. If f ∈ S1,1
µ,L(Rn), then the primal-dual flow (2.14) admits

a unique solution pair (x, λ) with x ∈ C1(R+; Rn) and λ ∈ C1(R+; Rm).
Moreover, we have

d
dtE(t) ≤ −E(t)− γ(t) ∥x′(t)∥2 . (2.16)

which gives the exponential decay

etE(t) +
∫ t

0

γ(s)es ∥x′(s)∥2 ds ≤ E(0), 0 ≤ t < ∞. (2.17)

Proof. Let us first prove the well-posedness. Define F : R+× Rn× Rm →
Rn × Rm by that

F(t,X) :=

− 1

γ(t)
∇xL(x, λ)

1

θ(t)
∇λL(x, λ)

 ∀X =

(
x

λ

)
.

Then the primal-dual flow (2.14) can be rewritten as

X ′(t) = F(t,X(t)), (2.18)

and a direct calculation yields that, for all X, Y ∈ Rn × Rm and 0 ≤ s ≤ t,

∥F(t,X)−F(s, Y )∥ ≤ C0(L+ ∥A∥) (|t− s| ∥X −X∗∥+ ∥X − Y ∥) et,

where X∗ = (x∗, λ∗) and the bounded positive constant C0 depends only on
γ0, θ0 and µ. This means F is locally Lipschitz continuous and according to
[54, Proposition 6.2.1] and [16, Corollary A.2], the ordinary differential equa-
tion (2.18) exists a unique classical solution X = (x, λ), with x ∈ C1(R+; Rn)

and λ ∈ C1(R+; Rm).
We then prove (2.16), which yields (2.17) immediately. By (2.12),

(2.14a) and (2.14b), it holds that
d
dtE(t) = ⟨∇γE , γ′⟩+ ⟨∇θE , θ′⟩+ ⟨∇xE , x′⟩+ ⟨∇λE , λ′⟩

=
µ− γ

2
∥x− x∗∥2 − θ

2
∥λ− λ∗∥2︸ ︷︷ ︸

I1

−1

γ
⟨∇xL(x, λ),∇xL(x, λ∗)⟩︸ ︷︷ ︸

I2

−⟨∇xL(x, λ), x− x∗⟩+ ⟨∇λL(x+ x′, λ), λ− λ∗⟩︸ ︷︷ ︸
I3

:= I1 + I2 + I3.
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Observing ∇xL(x, λ∗) = ∇xL(x, λ)− A⊤(λ− λ∗), we have

I2 = −1

γ

〈
∇xL(x, λ),∇xL(x, λ)−A⊤(λ− λ∗)

〉
= −γ

∥∥x′∥∥2 − 〈Ax′, λ− λ∗〉 .
Reformulate I3 as follows

I3 =
〈
∇λL(x+ x′, λ), λ− λ∗〉− ⟨Ax−Ax∗, λ− λ∗⟩ − ⟨∇xL(x, λ∗), x− x∗⟩

=
〈
Ax′, λ− λ∗〉− ⟨∇xL(x, λ∗), x− x∗⟩ .

Since f is µ-convex, we claim that L(·, λ∗) is also µ-convex. It follows from
(1.11) that

I3 −
〈
Ax′, λ− λ∗〉+ µ

2
∥x− x∗∥2 ≤L(x∗, λ∗)− L(x, λ∗) = L(x∗, λ)− L(x, λ∗),

where we used the fact that L(x∗, ·) is a constant. Consequently, collecting
the above estimates proves (2.16) and completes the proof. □

Furthermore, we have a corollary which gives: (i) the boundness of
λ(t) and x(t); (ii) the integrability of ∥x′(t)∥; (iii) the exponential decay
rates of the Lagrangian L(x(t), λ∗)−L(x∗, λ(t)), the primal objective residual
|f(x(t))− f(x∗)| and the feasibility violation ∥Ax(t)− b∥.

Corollary 2.1.1. If f ∈ S1,1
µ,L(Rn), then for the unique solution pair (x, λ) :

R+ → Rn × Rm of the primal-dual flow (2.14), we have the following esti-
mates.

•
√
γ0 + γminet ∥x′(t)∥ ∈ L2(0,∞).

• 0 ≤ L(x(t), λ∗)− L(x∗, λ(t)) ≤ e−tE(0).

• λ(t) is bounded: θ0 ∥λ(t)− λ∗∥2 ≤ 2E(0).

• x(t) is bounded: γ0 ∥x(t)− x∗∥2 ≤ 2E(0) and γmin ∥x(t)− x∗∥2 ≤
2e−tE(0) with γmin := min{γ0, µ}.

• ∥Ax(t)− b∥ ≤ e−tR0 and |f(x(t))− f(x∗)| ≤ e−t
(
E(0) + R0 ∥λ∗∥

)
,

where
R0 :=

√
2θ0E(0) + θ0 ∥λ0 − λ∗∥+ ∥Ax0 − b∥ .
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Proof. By (2.13), we have

γ(t) ≥ max
{
γmin, γ0e

−t
}

∀ t ≥ 0. (2.19)

The first to the fourth follow directly from (2.15), (2.17) and (2.19).
Let us prove the last one. Define ξ(t) := λ(t) − θ−1(t)(Ax(t) − b). In

view of (2.12) and (2.14b), it follows that

dξ
dt = λ′(t)− θ−1(t) (Ax′(t) + Ax(t)− b) = 0,

which says ξ(t) = ξ(0) for all t ≥ 0 and also implies

∥Ax(t)− b∥ = θ(t) ∥λ(t)− ξ(0)∥ ≤ θ(t)
(
∥λ(t)− λ∗∥+ ∥ξ(0)− λ∗∥

)
.

Hence, from the fact θ(t) = θ0e
−t and the boundness of ∥λ(t)− λ∗∥, we have

∥Ax(t)− b∥ ≤ e−t
(√

2θ0E(0) + θ0 ∥ξ(0)− λ∗∥
)
≤ e−tR0. (2.20)

Besides, it follows from (2.17) that

0 ≤ L(x(t), λ∗)− L(x∗, λ(t)) = f(x(t))− f(x∗) + ⟨λ∗, Ax(t)− b⟩ ≤ e−tE(0),

which together with the previous estimate (2.20) gives

|f(x(t))− f(x∗)| ≤ ∥λ∗∥ ∥Ax(t)− b∥+ e−tE(0) ≤ e−t
(
E(0) +R0 ∥λ∗∥

)
.

This establishes the proof. □

2.2. Two Extended Flow Models
We now consider two extensions of the primal-dual flow (2.14). The

first applies the Nesterov accelerated gradient (NAG) flow [82] to the primal
variable but leaves the multiplier invariant, and the second is designed for
the two-block case (2.28).
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2.2.1. Accelerated primal-dual flow

A natural extension of (2.14) is{
θλ′ −∇λL(x+ x′, λ) = 0, (2.21a)

γx′′ + (µ+ γ)x′ +∇xL(x, λ) = 0, (2.21b)
where γ and θ are still governed by (2.12). Introduce an auxiliary variable
v = x+ x′ and rewrite (2.21) as

x′ + x− v = 0, (2.22a)

θλ′ −∇λL(v, λ) = 0, (2.22b)

γv′ + µ(v − x) +∇xL(x, λ) = 0, (2.22c)
with arbitrary initial conditions

λ(0) = λ0 ∈ Rm, x(0) = x0 ∈ Rn, and v(0) = v0 ∈ Rn.

Both (2.21) and (2.22) are called accelerated primal-dual (APD) flow. Sim-
ilarly with before, we claim that the the APD flow system (2.22) admits a
unique classical solution pair (λ, x, v) with

λ ∈ C2(R+; Rm), x ∈ C2(R+; Rn), and v ∈ C1(R+; Rn).

Inspired by (2.15), let us equip the APD flow (2.22) with a suitable
Lyapunov function

E(t) := L(x(t), λ∗)− L(x∗, λ(t)) + γ(t)

2
∥v(t)− x∗∥2 + θ(t)

2
∥λ(t)− λ∗∥2 . (2.23)

Theorem 2.2.1. Assume f ∈ S1,1
µ,L(Rn). Let (λ, x, v) be the unique solution

to (2.22), then for E(t) defined by (2.23), it holds that
d
dtE(t) ≤ −E(t)− µ

2
∥x′(t)∥2 , (2.24)

which implies

E(t) + µ

2

∫ t

0

es−t ∥x′(s)∥2 ds ≤ e−tE(0), 0 ≤ t < ∞. (2.25)

Moreover, we have ∥Ax(t)− b∥ ≤ e−tR0,

|f(x(t))− f(x∗)| ≤ e−t
(
E(0) +R0 ∥λ∗∥

)
,

where R0 :=
√

2θ0E(0) + θ0 ∥λ0 − λ∗∥+ ∥Ax0 − b∥.
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Proof. A direct computation gives

d
dtE(t) = ⟨x′,∇xL(x, λ∗)⟩+ γ′

2
∥v − x∗∥2 + ⟨γv′, v − x∗⟩

+
θ′

2
∥λ− λ∗∥2 + ⟨θλ′, λ− λ∗⟩ .

In view of (2.12) and (2.22), we replace all temporal derivatives with their
right hand sides and obtain E ′(t) = I1 + I2, whereI1 := − θ

2
∥λ− λ∗∥2 + µ− γ

2
∥v − x∗∥2 + µ ⟨x− v, v − x∗⟩ ,

I2 := ⟨∇xL(x, λ∗), v − x⟩ − ⟨∇xL(x, λ), v − x∗⟩+ ⟨∇λL(v, λ), λ− λ∗⟩ .

Recall the identity

µ ⟨x− v, v − x∗⟩ = µ

2

(
∥x− x∗∥2 − ∥v − x∗∥2 − ∥v − x∥2

)
, (2.26)

which is trivial but very useful. We rewrite I1 as follows

I1 =
µ

2
∥x− x∗∥2 − γ

2
∥v − x∗∥2 − θ

2
∥λ− λ∗∥2 − µ

2
∥v − x∥2 . (2.27)

Inserting the splitting

⟨∇xL(x, λ∗), v − x⟩ = ⟨∇xL(x, λ∗), x∗ − x⟩+ ⟨∇xL(x, λ∗), v − x∗⟩

into I2 and using ∇xL(x, λ∗)−∇xL(x, λ) = A⊤(λ∗ − λ), we find

I2 = ⟨∇xL(x, λ∗), x∗ − x⟩+
〈
A⊤(λ∗ − λ), v − x∗〉+ ⟨∇λL(v, λ), λ− λ∗⟩

= ⟨∇xL(x, λ∗), x∗ − x⟩ .

Since f ∈ S1,1
µ,L, L(·, λ∗) is µ-convex and thus by (1.11),

I2 +
µ

2
∥x− x∗∥2 ≤ L(x∗, λ∗)− L(x, λ∗) = L(x∗, λ)− L(x, λ∗).

Now, in view of x′ = v − x, collecting this and (2.27) implies (2.24).
From (2.24) follows (2.25), and analogously to Corollary 2.1.1, it is not

hard to establish the exponential decay estimates of the feasibility ∥Ax(t)− b∥
and the primal objective |f(x(t))− f(x∗)|. This completes the proof. □
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2.2.2. The two-block case

Let us consider the two-block case

min
x∈Rn,y∈Rr

F (x, y) := f(x) + g(y) s.t. Ax+By = b, (2.28)

where A ∈ Rm×n, B ∈ Rm×r, b ∈ Rm, f ∈ S1,1
µf ,Lf

(Rn) and g ∈ S1,1
µg ,Lg

(Rr)

are two given functions.
It is clear that the previous APD flow (2.21) can be applied directly to

the problem (2.28). To utilize the separable structure, we adopt different time
rescaling factors for x and y respectively, and propose another continuous
model: 

0 = γx′′ + (γ + µf )x
′ +∇xL(x, y, λ), (2.29a)

0 = θλ′ −∇λL(x+ x′, y + y′, λ), (2.29b)

0 = βy′′ + (β + µg)y
′ +∇yL(x, y, λ), (2.29c)

where γ, β and θ are scaling factors and governed by

γ′ = µf − γ, β′ = µg − β, θ′ = −θ, (2.30)

with positive initial conditions: θ(0) = θ0 > 0, γ(0) = γ0 > 0 and β(0) =

β0 > 0. It is not hard to obtain the exact solution of (2.30):

γ(t) = γ0e
−t + µf (1− e−t), β(t) = β0e

−t + µg(1− e−t), θ(t) = e−t.

Similarly with (2.22), an alternative presentation of (2.29) reads as follows

x′ = v − x, (2.31a)

γv′ = µf (x− v)−∇xL(x, y, λ), (2.31b)

θλ′ = ∇λL(v, u, λ), (2.31c)

βu′ = µg(y − u)−∇yL(x, y, λ), (2.31d)

y′ = u− y. (2.31e)

This seems a little bit complicated but for algorithm designing and conver-
gence analysis, it is more convenient for us to start form (2.31) and treat
(γ, β, θ) as unknowns that solve (2.30).
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Let us modify the Lyapunov function (2.23) by that

E(t) := L(x, y, λ∗)− L(x∗, y∗, λ) + θ

2
∥λ− λ∗∥2 + β

2
∥u− y∗∥2 + γ

2
∥v − x∗∥2 .

(2.32)
Proceeding as before, it is not hard to conclude the existence and uniqueness
of a classical C1 solution to (2.31). Besides, we note that x, y and λ are C2.

Theorem 2.2.2. If f ∈ S1,1
µf ,Lf

(Rn) and g ∈ S1,1
µg ,Lg

(Rr), then for E(t) defined
by (2.32), it holds that

d
dtE(t) ⩽ −E(t)− µf

2
∥x′(t)∥2 − µg

2
∥y′(t)∥2 , (2.33)

which yields the exponential decay

2etE(t) +
∫ t

0

es
(
µf ∥x′(s)∥2 + µg ∥y′(s)∥2

)
ds ⩽ 2E(0), (2.34)

for all 0 ⩽ t < ∞.

Proof. As (2.34) can be obtained easily from (2.33), it is sufficient to
establish the latter. Set Θ := (γ, β, θ) and Z := (x, y, v, u, λ). Let us start
from the identity

d
dtE (t) = ⟨∇ZE , Z ′⟩+ ⟨∇ΘE ,Θ′⟩ .

By (2.30), it is trivial that

⟨∇ΘE ,Θ′⟩ = − θ

2
∥λ− λ∗∥2 + µf − γ

2
∥v − x∗∥2 + µg − β

2
∥u− y∗∥2 ,

and according to (2.22), a direct computation gives〈
∇ZE , Z ′〉

= ⟨λ− λ∗,∇λL(v, u, λ)⟩+ ⟨v − x,∇xL(x, y, λ∗)⟩+ ⟨u− y,∇yL(x, y, λ∗)⟩

+ ⟨v − x∗, µf (x− v)−∇xL(x, y, λ)⟩+ ⟨u− y∗, µg(y − u)−∇yL(x, y, λ)⟩ .

Shifting λ to λ∗ gives

− ⟨v − x∗,∇xL(x, y, λ)⟩ − ⟨u− y∗,∇yL(x, y, λ)⟩

=− ⟨v − x∗,∇xL(x, y, λ∗)⟩ − ⟨u− y∗,∇yL(x, y, λ∗)⟩ − ⟨λ− λ∗, Av +Bu− b⟩ ,
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where we have used the optimality condition Ax∗ +By∗ = b. It follows that

⟨∇ZE , Z ′⟩ = ⟨x∗ − x,∇xL(x, y, λ∗)⟩+ ⟨y∗ − y,∇yL(x, y, λ∗)⟩

+ µf ⟨x− v, v − x∗⟩+ µg ⟨y − u, u− y∗⟩ .
(2.35)

Since f is µf -convex and g is µg-convex, using (1.11), we obtain

⟨x∗ − x,∇xL(x, y, λ∗)⟩+ ⟨y∗ − y,∇yL(x, y, λ∗)⟩

⩽ L(x∗, y∗, λ)− L(x, y, λ∗)− µf

2
∥x− x∗∥2 − µg

2
∥y − y∗∥2 .

Similarly with (2.26), we rearrange the other two cross terms in (2.35) and
put everything together to get

d
dtE (t) ⩽ −E(t)− µf

2
∥x− v∥2 − µg

2
∥y − u∥2 .

Observing x − v = x′ and y − u = y′, we obtain (2.33) and complete the
proof of this theorem. □
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Time Discretizations

The continuous models proposed in the previous chapter paves the way
for designing optimization methods for solving the linearly constrained prob-
lem (2.1) (and the two-block case (2.28)).

In this chapter, an implicit scheme and an implicit-explicit scheme shall
be proposed respectively in Sections 3.1 and 3.2. These lead to new efficient
primal-dual methods that will be applied to solving optimal transport-like
problems. The corresponding nonergodic convergence rates will be estab-
lished via tailored discrete Lyapunov functions.

3.1. An Implicit Scheme
In this section, let us consider an implicit Euler method for the APD flow

(2.21): given the initial guesses x0, v0 ∈ Rn and λ0 ∈ Rm, do the iteration

θk
λk+1 − λk

αk

= ∇λL(vk+1, λk+1), (3.1a)
xk+1 − xk

αk

= vk+1 − xk+1, (3.1b)

γk
vk+1 − vk

αk

∈ µ(xk+1 − vk+1)− ∂xL (xk+1, λk+1) , (3.1c)

where ∂xL(x, λ) := ∂f(x) + A⊤λ and αk > 0 denotes the step size. Note
that in discrete level, we are allowed to consider nonsmooth f and (3.1c) be-
comes a difference inclusion. The parameter system (2.12) is also discretized
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implicitly:
γk+1 − γk

αk

= µ− γk+1,
θk+1 − θk

αk

= − θk+1. (3.2)

Before the convergence analysis, let us have a look at the solvability. By
(3.1b), we express vk+1 in terms of xk+1 and xk and plug it into (3.1a) and
(3.1c) to obtain

xk+1 ∈ x̃k − ηk
(
∂f(xk+1) + A⊤λk+1

)
, (3.3a)

λk+1 = λk −
1

θk
(Axk − b) +

1

θk+1

(Axk+1 − b), (3.3b)

where ηk = α2
k/τk and

τk := γk + µαk + γkαk, x̃k := τ−1
k ((γk + µαk)xk + γkαkvk) . (3.4)

Eliminating λk+1 from (3.3a) to get

xk+1 = argmin
x∈Rn

{
f(x) +

1

2θk+1

∥Ax− b∥2 + 1

2ηk
∥x− x̂k∥2

}
, (3.5)

where x̂k := x̃k−ηkA
⊤ (λk − θ−1

k (Axk − b)
)
. Note that the quadratic penalty

term ∥Ax− b∥2 comes from λk+1, which is coupled with xk+1. If we drop that
term, then (3.5) is very close to the proximal ALM. On the other hand, by
(3.3a), we have

xk+1 = proxηkf

(
x̃k − ηkA

⊤λk+1

)
,

and putting this into (3.3b) gives a nonlinear equation

θk+1λk+1 − Aprox
(
x̃k − ηkA

⊤λk+1

)
= λ̃k, (3.6)

where λ̃k := θ−1
k+1(λk − θ−1

k (Axk − b))− b.
Below let us present convergence analysis of the implicit scheme (3.1)

via the discrete Lyapunov function

Ek := L(xk, λ
∗)−L(x∗, λk)+

γk
2
∥vk − x∗∥2+ θk

2
∥λk − λ∗∥2 ∀ k ∈ N, (3.7)

which agrees with the discrete version of (2.23).

Theorem 3.1.1. Assume f is µ-convex with µ ⩾ 0. Then for the fully
implicit scheme (3.1) with any step size αk > 0, we have the contraction

Ek+1 − Ek ⩽ −αkEk+1, for all k ∈ N. (3.8)
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Moreover, it holds that

∥Axk − b∥ ⩽ θk
θ0
R0, (3.9a)

0 ⩽ L(xk, λ
∗)− L(x∗, λk) ⩽

θk
θ0
E0, (3.9b)

|f(xk)− f(x∗)| ⩽ θk
θ0

(E0 +R0 ∥λ∗∥) , (3.9c)

where R0 =
√
2θ0E0 + θ0 ∥λ0 − λ∗∥+ ∥Ax0 − b∥.

Proof. Mimicking the proof of the continuous setting (cf.Theorem 2.2.1),
we replace the derivative with the difference Ek+1 − Ek = I1 + I2 + I3, where

I1 := L (xk+1, λ
∗)− L (xk, λ

∗) ,

I2 :=
θk+1

2
∥λk+1 − λ∗∥2 − θk

2
∥λk − λ∗∥2 ,

I3 :=
γk+1

2
∥vk+1 − x∗∥2 − γk

2
∥vk − x∗∥2 .

Let us set the first term I1 aside and consider the estimates for I2 and
I3. For a start, by the equation of the sequence {θk} in (3.2), an evident
calculation yields that

I2 =
θk+1 − θk

2
∥λk+1 − λ∗∥2 + θk

2

(
∥λk+1 − λ∗∥2 − ∥λk − λ∗∥2

)
= − αkθk+1

2
∥λk+1 − λ∗∥2 + θk

2

(
∥λk+1 − λ∗∥2 − ∥λk − λ∗∥2

)
= − αkθk+1

2
∥λk+1 − λ∗∥2 − θk

2
∥λk+1 − λk∥2 + θk ⟨λk+1 − λk, λk+1 − λ∗⟩ .

According to (3.1a), we rewrite the last cross term to obtain

I2 = −αkθk+1

2
∥λk+1 − λ∗∥2 − θk

2
∥λk+1 − λk∥2 + αk ⟨Avk+1 − b, λk+1 − λ∗⟩ .

(3.10)
Similarly, by (3.2), the term I3 admits the decomposition

I3 =
αk(µ− γk+1)

2
∥vk+1 − x∗∥2 − γk

2
∥vk+1 − vk∥2 + γk ⟨vk+1 − vk, vk+1 − x∗⟩ .

(3.11)
In view of (3.1c), it is not hard to find

γk(vk+1 − vk) = µαk(xk+1 − vk+1)− αk

(
ξk+1 + A⊤λk+1

)
,
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where ξk+1 ∈ ∂f(xk+1). Hence, I3 can be further expanded by that

I3 = µαk ⟨xk+1 − vk+1, vk+1 − x∗⟩ − αk

〈
ξk+1 + A⊤λ∗, vk+1 − x∗〉

+
αk(µ− γk+1)

2
∥vk+1 − x∗∥2 − γk

2
∥vk+1 − vk∥2

− αk ⟨Avk+1 − b, λk+1 − λ∗⟩ ,

(3.12)

where the last term in the above equality offsets the last term in (3.10). The
first cross term in (3.12) is rewritten as

⟨xk+1 − vk+1, vk+1 − x∗⟩ = 1

2

(
∥xk+1 − x∗∥2 − ∥xk+1 − vk+1∥2 − ∥vk+1 − x∗∥2

)
.

Observing (3.1b), we split the second cross term in (3.12) and get

− αk

〈
ξk+1 + A⊤λ∗, vk+1 − x∗〉

= −
〈
ξk+1 + A⊤λ∗, xk+1 − xk

〉
− αk

〈
ξk+1 + A⊤λ∗, xk+1 − x∗〉 ,

By the fact that L(·, λ∗) is µ-convex and ξk+1 + A⊤λ∗ ∈ ∂xL(xk+1, λ
∗), we

obtain from (1.10) that
µαk

2
∥xk+1 − x∗∥2 − αk

〈
ξk+1 + A⊤λ∗, vk+1 − x∗〉

⩽ L(xk, λ
∗)− L(xk+1, λ

∗) + αk (L(x∗, λ∗)− L(xk+1, λ
∗)) .

(3.13)

Note that the first term in (3.13) nullifies I1 exactly. We find, after rearrang-
ing terms and dropping the surplus negative square term −∥xk+1 − vk+1∥2,
that

Ek+1 − Ek ⩽ − αkEk+1 −
θk
2
∥λk+1 − λk∥2 −

γk
2
∥vk+1 − vk∥2 , (3.14)

which implies (3.8) immediately.
From (3.8), we have

Ek+1 ≤
Ek

1 + αk

=
θk+1

θk
Ek =⇒ Ek ⩽

θk
θ0
E0, (3.15)

which promises (3.9b) directly. Hence it is enough to establish (3.9a) and
(3.9c). By (3.1a), we find

λk+1 = λk −
1

θk
(Axk − b) +

1

θk+1

(Axk+1 − b). (3.16)
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Whence, it follows that

λk −
1

θk
(Axk − b) = λ0 −

1

θ0
(Ax0 − b), k ∈ N, (3.17)

which implies the estimate

∥Axk − b∥ = θk
∥∥λk − λ0 + θ−1

0 (Ax0 − b)
∥∥ ⩽ θk ∥λk − λ0∥+

θk
θ0

∥Ax0 − b∥ .

Thanks to the estimate (3.15), we have θ0 ∥λk − λ∗∥2 ⩽ 2E0 and moreover,

∥Axk − b∥ ⩽ θk ∥λk − λ∗∥+ θk ∥λ0 − λ∗∥+ θk
θ0

∥Ax0 − b∥ ⩽ θk
θ0
R0,

which proves (3.9a). In addition, it is clear that

0 ⩽ L(xk, λ
∗)− L(x∗, λk) = f(xk)− f(x∗) + ⟨λ∗, Axk − b⟩

⩽ L(xk, λ
∗)− L(x∗, λk),

and thus there holds

|f(xk)− f(x∗)| ⩽ ∥λ∗∥ ∥Axk − b∥+ L(xk, λ
∗)− L(x∗, λk)

⩽ θk
θ0

(E0 + ∥λ∗∥R0) .

This establishes (3.9c) and finishes the proof. □

3.2. An Implicit-Explicit Scheme
We now propose an implicit-explicit scheme for the two-block variant

primal-dual flow model (2.31): given the initial guesses x0, v0 ∈ Rn, y0, u0 ∈
Rr and λ0 ∈ Rm, do the iteration

xk+1 − xk

αk

= vk+1 − xk+1, (3.18a)

γk
vk+1 − vk

αk

∈ µf (xk+1 − vk+1)− ∂xL(xk+1, yk+1, λ̃k+1), (3.18b)

θk
λk+1 − λk

αk

= ∇λL(vk+1, uk+1, λk+1), (3.18c)

βk
uk+1 − uk

αk

∈ µg(yk+1 − uk+1)− ∂yL(xk+1, yk+1, λ̃k+1), (3.18d)
yk+1 − yk

αk

= uk+1 − yk+1, (3.18e)
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where αk > 0 is the time step size and

λ̃k+1 = λk + αk/θk (Avk+1 +Buk − b) . (3.19)

Analogously to (3.1), both f and g can be nonsmooth with ∂xL(x, y, λ) :=
∂f(x) + A⊤λ and ∂yL(x, y, λ) := ∂g(y) + A⊤λ, respectively. The parameter
system (2.30) is discretized implicitly by that

γk+1 − γk
αk

= µf − γk+1,
βk+1 − βk

αk
= µg − βk+1,

θk+1 − θk
αk

= − θk+1.

(3.20)
Rearrange (3.18) in the usual primal-dual formulation:

vk+1 = xk+1 + (xk+1 − xk)/αk, (3.21a)

xk+1 = argmin
x∈Rn

{
L(x, yk+1, λ̃k+1) +

ηf,k
2α2

k

∥x− x̃k∥2
}
, (3.21b)

λk+1 = λk + αk/θk(Avk+1 +Buk+1 − b), (3.21c)

yk+1 = argmin
y∈Rr

{
L(xk+1, y, λ̃k+1) +

ηg,k
2α2

k

∥y − ỹk∥2
}
, (3.21d)

uk+1 = yk+1 + (yk+1 − yk)/αk, (3.21e)

where ηf,k := (αk + 1)γk + µfαk, ηg,k := (αk + 1)βk + µgαk and

x̃k :=
αkγkvk + (γk + µfαk)xk

ηf,k
, ỹk :=

αkβkuk + (βk + µgαk)yk
ηg,k

. (3.22)

By (3.20), (3.21a) and (3.21e), we can also rewrite (3.22) as

x̃k = xk +
γkαk

ηf,kαk−1

(xk − xk−1), ỹk = yk +
βkαk

ηg,kαk−1

(yk − yk−1), (3.23)

with α−1 = 1, x−1 = 2x0 − v0 and y−1 = 2y0 − u0.

3.2.1. A single-step analysis

We shall give a one-iteration analysis for the implicit-explicit discretiza-
tion (3.18). Then the nonergodic mixed-type convergence rates of our first
family of methods can be obtained. To do this, introduce a Lyapunov func-
tion

Ek := L(xk, yk, λ
∗)− L(x∗, y∗, λk) +

γk
2
∥vk − x∗∥2

+
βk

2
∥uk − y∗∥2 + θk

2
∥λk − λ∗∥2 ,

(3.24)

which corresponds to the discrete analogue to (2.32).
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Lemma 3.2.1. Let k ∈ N be fixed and assume f is µf -convex and g is µg-
convex with µf , µg ≥ 0. For the implicit-explicit scheme (3.18) with (3.20)
and the step size αk > 0, we have

Ek+1 − Ek ≤− αkEk+1 +
θk
2

∥∥∥λk+1 − λ̃k+1

∥∥∥2
− γk

2
∥vk+1 − vk∥2 −

βk

2
∥uk+1 − uk∥2 .

(3.25)

Proof. Let us calculate the difference Ek+1 − Ek = I1 + I2 + I3 + I4, where

I1 := L(xk+1, yk+1, λ
∗)− L(xk, yk, λ

∗),

I2 :=
θk+1

2
∥λk+1 − λ∗∥2 − θk

2
∥λk − λ∗∥2 ,

I3 :=
γk+1

2
∥vk+1 − x∗∥2 − γk

2
∥vk − x∗∥2 ,

I4 :=
βk+1

2
∥uk+1 − y∗∥2 − βk

2
∥uk − y∗∥2 .

In what follows, we aim to estimate the above four terms one by one.
By (3.18b) and (3.18d), we find tat

pk+1 := µf (xk+1 − vk+1)− γk
vk+1 − vk

αk

∈ ∂xL(xk+1, yk+1, λ̃k+1), (3.26)

qk+1 := µg(yk+1 − uk+1)− βk
uk+1 − uk

αk

∈ ∂yL(xk+1, yk+1, λ̃k+1), (3.27)

and it follows that

I1 = L(xk+1, yk+1, λ̃k+1)− L(xk, yk, λ̃k+1)

+
〈
λ∗ − λ̃k+1, A(xk+1 − xk) + B(yk+1 − yk)

〉
≤ ⟨pk+1, xk+1 − xk⟩+ ⟨qk+1, yk+1 − yk⟩

+
〈
λ∗ − λ̃k+1, A(xk+1 − xk) + B(yk+1 − yk)

〉
.

(3.28)

By the equation of the sequence {θk} in (3.20), there holds

I2 =
θk+1 − θk

2
∥λk+1 − λ∗∥2 + θk

2

(
∥λk+1 − λ∗∥2 − ∥λk − λ∗∥2

)
=− αkθk+1

2
∥λk+1 − λ∗∥2 + θk ⟨λk+1 − λk, λk+1 − λ∗⟩ − θk

2
∥λk+1 − λk∥2 .

To match the term λ̃k+1 in (3.28), we use (3.18c) to rewrite the above cross
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term and obtain
θk ⟨λk+1 − λk, λk+1 − λ∗⟩

= θk

〈
λk+1 − λk, λk+1 − λ̃k+1 + λ̃k+1 − λ∗

〉
− θk

2
∥λk+1 − λk∥2

= αk

〈
Avk+1 +Buk+1 − b, λ̃k+1 − λ∗

〉
+

θk
2

∥∥∥λk+1 − λ̃k+1

∥∥∥2 − θk
2

∥∥∥λk − λ̃k+1

∥∥∥2 .
This implies the estimate

I2 ≤ αk

〈
Avk+1 +Buk+1 − b, λ̃k+1 − λ∗

〉
+

θk
2

∥∥∥λk+1 − λ̃k+1

∥∥∥2 − αkθk+1

2
∥λk+1 − λ∗∥2 .

(3.29)

Similarly, by the equation of {γk} in (3.20), we have

I3 =
γk+1 − γk

2
∥vk+1 − x∗∥2 + γk

2

(
∥vk+1 − x∗∥2 − ∥vk − x∗∥2

)
=

αk(µf − γk+1)

2
∥vk+1 − x∗∥2 − γk

2
∥vk+1 − vk∥2 + γk ⟨vk+1 − vk, vk+1 − x∗⟩ .

(3.30)
In view of (3.26), we rewrite the last term by that

γk ⟨vk+1 − vk, vk+1 − x∗⟩ = µfαk ⟨xk+1 − vk+1, vk+1 − x∗⟩ − αk ⟨pk+1, vk+1 − x∗⟩ .

Using (3.21a) and summarizing the above decompositions yield that

I3 =− αkγk+1

2
∥vk+1 − x∗∥2 − γk

2
∥vk+1 − vk∥2 −

µfαk

2
∥xk+1 − vk+1∥2

+
µfαk

2
∥xk+1 − x∗∥2 − αk ⟨pk+1, xk+1 − x∗⟩ − ⟨pk+1, xk+1 − xk⟩ .

(3.31)

Analogously, by (3.20), (3.27) and (3.21e), we have

I4 =− αkβk+1

2
∥uk+1 − y∗∥2 − βk

2
∥uk+1 − uk∥2 −

µgαk

2
∥yk+1 − uk+1∥2

+
µgαk

2
∥yk+1 − y∗∥2 − αk ⟨qk+1, yk+1 − y∗⟩ − ⟨qk+1, yk+1 − yk⟩ .

(3.32)

Now, collecting (3.29), (3.31) and (3.32), we arrive at the upper bound

I2 + I3 + I4 ≤− αkEk+1 +
θk
2

∥∥∥λk+1 − λ̃k+1

∥∥∥2
− γk

2
∥vk+1 − vk∥2 −

βk

2
∥uk+1 − uk∥2

− ⟨pk+1, xk+1 − xk⟩ − ⟨qk+1, yk+1 − yk⟩

−
〈
λ∗ − λ̃k+1, A(xk+1 − xk) + B(yk+1 − yk)

〉
,

where we used the µf -convexity of f and the µg-convexity of g (cf.(1.10)).
Plugging the estimate (3.28) of I1 into the above estimate establishes (3.25)
and finishes the proof of this lemma. □
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3.2.2. Non-ergodic convergence rate

Based on the one-iteration estimate (3.25), we shall establish the non-
ergodic convergence rate of the scheme (3.18) with properly chosen step size
sequence {αk}.

In view of (3.19) and (3.21c), we have

λk+1 − λ̃k+1 = αk/θkB(uk+1 − uk). (3.33)

Hence, if α2
k ∥B∥2 ≤ βkθk, then

θk
2

∥∥∥λk+1 − λ̃k+1

∥∥∥2 = α2
k

2θk
∥B(uk+1 − uk)∥2 ≤

βk

2
∥uk+1 − uk∥2 , (3.34)

and plugging this into (3.25) gives the contraction estimate

Ek+1 − Ek ≤ −αkEk+1 ∀ k ∈ N. (3.35)

Theorem 3.2.1. Assume f is µf -convex and g is µg-convex with µf , µg ≥ 0.
For the implicit-explicit scheme (3.18) with (3.20) and the step size αk =
√
βkθk/ ∥B∥, we have

∥Axk +Byk − b∥ ≤ θk
θ0
R0,

L(xk, yk, λ
∗)− L(x∗, y∗, λk) ≤

θk
θ0
E0,

|F (xk, yk)− F ∗| ≤ θk
θ0
(E0 + ∥λ∗∥R0).

(3.36)

Above, R0 :=
√
2E0 + ∥λ0 − λ∗∥+ ∥Ax0 +By0 − b∥ and

θk
θ0

≤ min
{

∥B∥
∥B∥+

√
β0k

,
Q2

(Q+
√
θ0βmink)2

}
, (3.37)

where βmin = min{µg, β0}, βmax = max{µg, β0} and

Q =
√

∥B∥+
√

∥B∥+
√

θ0βmax.

Proof. Based on the above discussions, the step size choice αk =
√
βkθk/ ∥B∥

promises the contraction (3.35). Similarly with (3.15), we have Ek ≤ θk/θ0E0,
which implies

L(xk, yk, λ
∗)− L(x∗, y∗, λk) ≤ θk/θ0E0.
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Following the proof of (3.9), we can establish

∥Axk +Byk − b∥ ≤ θkR0, and |F (xk, yk)− F ∗| ≤ θk/θ0(E0 + ∥λ∗∥R0).

This proves (3.36).
It remains to verify the decay estimate (3.37). By (3.20), it follows that

θk+1 − θk = −αkθk+1 = −
√

βkθkθk+1/ ∥B∥ , (3.38)

and we also have

βk+1 =
βk + µgαk

1 + αk

≥ βk

1 + αk

=
θk+1

θk
βk =⇒ βk ≥ θkβ0/θ0.

Hence, invoking (3.38) gives

θk+1 − θk ≤ −
√

β0/θ0/ ∥B∥ θkθk+1.

which leads to

1

θk+1

− 1

θk
≥
√
β0/θ0
∥B∥

=⇒ θk
θ0

≤ ∥B∥
∥B∥+

√
β0k

. (3.39)

On the other hand, it is not hard to find that βk ≥ βmin and this together
with (3.38) gives

θk+1 − θk ≤ −
√

βmin/ ∥B∥
√
θkθk+1. (3.40)

Observing that θk ≤ θ0 and βk ≤ βmax for all k ∈ N, we obtain

αk =
√
βkθk/ ∥B∥ ≤

√
θ0βmax/ ∥B∥ ,

and this implies
1√
θk+1

− 1√
θk

√
θk

θk+1
− 1√

θk

=

√
θk+1√

θk+1 +
√
θk

=
1

1 +
√
1 + αk

≥
√

∥B∥
Q

.

Combining this with (3.40) yields that

1√
θk+1

− 1√
θk

≥
√
βmin

Q
=⇒ θk

θ0
≤ Q2(

Q+
√
θ0βmink

)2 .
Collecting this and (3.39) proves (3.37) and concludes the proof. □
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Chapter 4

Two Alternating Direction
Methods of Multipliers

In this and the next chapter, based on the time discretizations in the
previous chapter, we propose efficient optimization solvers for the generalized
transportation problem (1.8).

More precisely, a semi-proximal ADMM is firstly considered in Sec-
tion 4.1, and the global linear rate O(ρk) will be established in Section 4.2.
Then in Section 4.3 we present a minor variant of the implicit-explicit scheme
(3.18), which leads to an accelerated ADMM and possesses the nonergodic
sublinear rate O(1/k). Moreover, some numerical experiments are provided
in Section 4.4.

4.1. Semi-proximal ADMM
Let M = m+ n and J = mn+M . Introduce x = (x, y, z) and

H = (G, IY , IZ) =

(
T I

Π O

)
.

Rewrite (1.8) as follows

min
x∈RJ , y∈RJ

f(x) + δΣ(y) s.t.Ax+ By = b, (4.1)
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where f(x) = σ/2 ∥x− ϕ∥2 + c⊤x and

A =

(
H

I

)
, B =

(
O

−I

)
, b =

(
b

0J

)
.

Introduce the Lagrangian

L(x,y,λ) := f(x) + δΣ(y) + ⟨λ,Ax+ By − b⟩ .

Given any δ > 0, define the augmented Lagrangian function for (4.1) by
that

Lδ(x,y,λ) := f(x) + δΣ(y) + ⟨λ,Ax+ By − b⟩+ δ

2
∥Ax+ By − b∥2 . (4.2)

Also we set L(x,y,λ) = L0(x,y,λ) for δ = 0. Assume (4.2) admits a saddle
point (x∗,y∗,λ∗) such that

Lδ(x
∗,y∗,λ) ⩽ Lδ(x

∗,y∗,λ∗) ⩽ Lδ(x,y,λ
∗) ∀ (x,y,λ) ∈ Σ,

Throughout, we use Ω∗ to denote the saddle point point set of (4.2). In other
words, for any (x∗,y∗,λ∗) ∈ Ω∗, we have

0 = A⊤λ∗ +∇f(x∗),

0 = b−Ax∗ − By∗,

0 ∈ B⊤λ∗ +NΣ(y
∗).

(4.3)

Recall the semi-proximal ADMM [49]
xk+1 = argmin

x∈RJ

{
Lδ(x,yk,λk) +

1

2
∥x− xk∥2P

}
, (4.4a)

yk+1 = argmin
y∈RJ

Lδ(xk+1,y,λk), (4.4b)

λk+1 = λk + δ (Axk+1 + Byk+1 − b) , (4.4c)
where P is some symmetric positive semidefinite matrix. Let

D̃ := diag (Imn, OM×M) , c̃ :=

(
σϕ− c

0M

)
.

Then reformulate (4.4) more clearly as follows
xk+1 =

(
σD̃ + P + δA⊤A

)−1(
Pxk + c̃−A⊤λk − δA⊤(Byk − b)

)
,

yk+1 = projΣ
(
xk+1 − B⊤λk/δ

)
,

λk+1 = λk + δ (Axk+1 + Byk+1 − b) .

(4.5)
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Chapter 4. Two Alternating Direction Methods of Multipliers

Below, we summarize (4.4) with P = δI in Algorithm 1. Since Σ is a
simple box region, projΣ is easy to calculate. The matrix inverse operation
admits closed form and shall be given in the next section.

Algorithm 1 Semi-proximal ADMM for solving (4.1)
Input: δ > 0, x0 ∈ RJ , y0 ∈ Σ and λ0 ∈ RJ+M+l.
1: for k = 0, 1, . . . do
2: Set sk = δxk + c̃−A⊤λk − δA⊤(Byk − b).
3: Update xk+1 =

(
σD̃ + P + δA⊤A

)−1
sk by (4.6), (4.7) and (4.8).

4: Update yk+1 = projΣ
(
xk+1 − B⊤λk/δ

)
.

5: Update λk+1 = λk + δ (Axk+1 + Byk+1 − b).
6: end for

Remark 4.1.1. Note that the involved matrix-vector multiplication opera-
tions are related to T and T⊤. It is clear that

Tx =

((
In ⊗ 1⊤

m

)
vec(X)(

1⊤
n ⊗ Im

)
vec(X)

)
=

(
vec
(
X⊤1m

)
vec (X1n)

)
,

where x = vec(X) ∈ Rmn. This takes almost nothing since it only requires
the vectors of row sum and column sum with respect to X. Besides, for any
given z = (z⊤1 , z

⊤
2 )

⊤ ∈ RM with z1 ∈ Rm and z2 ∈ Rn, we have

T⊤z = (In ⊗ 1m)z1 + (1⊤
n ⊗ Im)z2 = vec(1nz

⊤
1 ) + vec(z21⊤

m).

This just involves vector replication and the operation cost is O(mn).

4.1.1. Matrix inverse formulae

Notice that
A⊤A = I +H⊤H.

If we simply take P = δI, then we can find explicit inverse formula of

A := σD̃ + P + δA⊤A = σD̃ + 2δI +H⊤H

by using Sherman–Morrison–Woodbury formula(
D +H⊤H

)−1
= D−1 −D−1H⊤(I +HD−1H⊤)−1HD−1, (4.6)
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where D := σD̃ + 2δI = diag ((σ + 2δ)Imn, 2δIM) is diagonal. Let σ1 =

1/(σ + 2δ) and σ2 := 1/(2δ). We then focus on

H := I +HD−1H⊤ =

(
(σ2 + 1)I + σ1TT

⊤ σ1TΠ
⊤

σ1ΠT
⊤ I + σ1ΠΠ

⊤

)
:=

(
U L⊤

L W

)
.

The inverse is given by

H−1 =

(
U−1 + U−1L⊤S−1LU−1 −U−1L⊤S−1

−S−1LU−1 S−1

)
, (4.7)

where S = W − LU−1L⊤ ∈ Rl×l denotes the Schur complement.
If l is small, which is indeed true for all transport-like problems given in

Section 1.1.3, then S is easy to invert and what we shall pay attention to is
U−1. Observe that

U =

(
(σ2 + 1 +mσ1)I σ11n×m

σ11m×n (σ2 + 1 + nσ1)I

)
:=

(
V R⊤

R Q

)
.

The inverse is given by

U−1 =

(
V −1 + V −1R⊤K−1RV −1 −V −1R⊤K−1

−K−1RV −1 K−1

)
, (4.8)

where K = Q − RV −1R⊤ = (σ2 + 1 + nσ1)I − nσ2
1

σ2+1+mσ1
1m×m. Using the

Sherman–Morrison formula again, we obtain

K−1 =
1

σ2 + 1 + nσ1

I +
nσ2

1

σ2 + 1 + nσ1

· 1m×m

(σ2 + 1)2 + σ1(σ2 + 1)(m+ n)
.

Taking this into (4.8) gives the exact expression of U−1.
According to the discussions in Remark 4.1.1, we claim that the total

operation cost of A−1s is O(mn).

4.2. Convergence of the Semi-proximal ADMM

4.2.1. Ergodic sublinear rate

Based on [49, Theorem 3.2] or [41, Theorem B.1], it is not hard to
obtain the convergence and the ergodic sublinear rate O(1/

√
k) for the semi-

proximal ADMM (4.4); see [49, Theorem 3.3] for instance.
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Below, let us briefly summarize these basic results. Introduce a block
diagonal matrix R := diag (δIJ , δIJ , 1/δIJ+M+l). Let X∗ = (x∗,y∗,λ∗) ∈ Ω∗

and denote by {Xk} = {(xk,yk,λk)} the sequence generated by Algorithm 1.
The contraction property follows directly from [49, Theorem 3.2]:

∥Xk+1 −X∗∥2R − ∥Xk −X∗∥2R
⩽− ∥Xk+1 −Xk∥2R − 2 (L(x∗,y∗,λk+1)− L(xk+1,yk+1,λ

∗)) .
(4.9)

Based on (4.9), we can establish the global convergence: lim
k→∞

Xk = X∞ ∈
Ω∗; see [49, Theorem 3.3]. Additionally, for all k ⩾ 1, we have the sublinear
rate

0 ⩽ L(x∗,y∗,λk)− L(x̃k, ỹk,λ
∗) ⩽ C1

k
∥X0 −X∗∥2R , (4.10)

∥Axk + Byk − b∥2 ⩽ C2

k
∥X0 −X∗∥2R , (4.11)

where x̃k :=
1
k

∑k
i=1 xi and ỹk :=

1
k

∑k
i=1 yi.

4.2.2. Global linear convergence

Following [53, Corollary 3.1] and invoking the celebrate stability result
of linear inequality system (cf. [92, Corollary 2.2]), which implies the error
bound condition, we are allowed to prove the global linear convergence rate.
This means the operation complexity of Algorithm 1 is O(mn |ln ϵ| / |ln ρ|)
with some constant ρ ∈ (0, 1).

We mention that Σ is a convex polyhedral and for simplicity, we con-
sider the half-space Σ = RJ

+. Then the necessary optimality condition (4.3)
becomes a linear equality-inequality system

QX∗ = q, SX∗ ⩾ 0, (4.12)

where Q and S are constant matrices.
Given any perturbation e, let X solve

QX = q + e, SX ⩾ 0, (4.13)

then by [92, Corollary 2.2], there exist a constant β > 0, such that

dist2(X,Ω∗) ⩽ β ∥e∥2 , (4.14)

where dist2(X,Ω∗) := inf{∥X −X∗∥2 : X∗ ∈ Ω∗}.
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Lemma 4.2.1. Let {Xk} be generated by Algorithm 1, then for all k ∈ N,

dist2(Xk+1,Ω
∗) ⩽ C ∥Xk+1 −Xk∥2R , (4.15)

with some positive constant C > 0.

Theorem 4.2.1. Let {Xk} be generated by Algorithm 1, then we have the
global linear rate

dist2R(Xk,Ω
∗) ⩽ ρkdist2R(X0,Ω

∗), k ∈ N, (4.16)

where ρ ∈ (0, 1) and dist2R(X,Ω∗) := infX∗∈Ω∗ ∥X −X∗∥2R.

Proof. From the contraction property (4.9) we have

dist2R(Xk+1,Ω
∗)− dist2R(Xk,Ω

∗) ⩽ −∥Xk+1 −Xk∥2R .

Thanks to the error bound condition (4.14), it holds that

dist2R(Xk+1,Ω
∗)− dist2R(Xk,Ω

∗) ⩽ − C1dist2R(Xk+1,Ω
∗),

with some C1 > 0. Hence, we obtain the linear contraction

dist2R(Xk+1,Ω
∗) ⩽ 1

1 + C1

dist2R(Xk,Ω
∗).

This implies (4.16) and completes the proof. □

4.3. An Accelerated Proximal ADMM

4.3.1. Main algorithm

Based on the primal-dual method (3.21) that comes from the implicit-
explicit discretization (3.18) for the continuous model (2.31), we propose a
minor variant for solving the two-block minimization problem (4.1). More
precisely, given x−1 = x0 ∈ RJ , y−1 = y0 ∈ Σ and λ0 ∈ RJ+M+l, consider

vk+1 = xk+1 + (xk+1 − xk)/αk, (4.17a)

xk+1 = argmin
x∈RJ

{
L(x,yk+1, λ̃k+1) +

1

2αk+1

∥x− x̃k∥2
}
, (4.17b)

λk+1 = λk +Avk+1 + Buk+1 − b, (4.17c)

yk+1 = argmin
y∈RJ

{
L(xk+1,y,λk+1) +

1

2αk+1

∥y − ỹk∥2
}
, (4.17d)

uk+1 = yk+1 + (yk+1 − yk)/αk, (4.17e)
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where λ̃k+1 = λk +Avk+1 + Buk − b and

x̃k = xk +
αk+1

αk−1

(xk − xk−1), ỹk = yk +
αk+1

αk−1

(yk − yk−1).

Moreover, the sequence {αk}∞k=−1 is defined by that

α−1
−1 = 0, αk =

1

k + 1
, k ∈ N. (4.18)

Algorithm 2 Accelerated proximal ADMM for solving (4.1)
Input: x0 ∈ RJ , y0 ∈ Σ and λ0 ∈ RJ+M+l.
1: Set x−1 = x0, y−1 = u0 = y0.
2: for k = 0, 1, . . . do
3: Set (x̃k, ỹk) =

2k + 2

k + 2
(xk,yk)−

k

k + 2
(xk−1,yk−1).

4: Set λ̄k = λk − (k + 1)(Axk + Byk − b).
5: Set λ̂k = λk − (k + 1)(Axk + Buk − b).
6: Set zk = c̃−A⊤λ̂k + (k + 2)(x̃k −A⊤(Buk − b)).
7: Update xk+1 =

(
σĨ + (k + 2)(I +AA)

)−1
(zk) by (4.6)–(4.8).

8: Update yk+1 = projΣ
[
1
2

(
ỹk + B⊤λ̄k/(k + 2)− B⊤(Axk+1 − b)

)]
.

9: Update (vk+1,uk+1) = (k + 2)(xk+1,yk+1)− (k + 1)(xk,yk).
10: Update λk+1 = λk +Avk+1 + Buk+1 − b.
11: end for

Notice that we use only the Lagrangian function L in (4.17a) but the
augmented term still exists implicitly since λ̃k+1 depends on vk+1 and as well
as on xk+1. To see this, we rewrite (4.17a) as follows

xk+1 = argmin
x∈RJ

{
L(x,yk, λ̂k) +

1

2αk+1
∥Ax+ Buk − b∥2 + 1

2αk+1
∥x− x̃k∥2

}
,

(4.19)
where λ̂k = λk − α−1

k (Axk + Buk − b). This gives the solution

xk+1 =
(
σĨ + α−1

k+1(I +AA)
)−1
(
c̃−A⊤λ̂k + α−1

k+1(x̃k −A⊤(Buk − b))
)
,

which has closed expression by (4.6), (4.7) and (4.8). Besides, by (4.17b) and
(4.17c), we see that

yk+1 = argmin
y∈RJ

{
L(xk+1,y, λ̄k) +

1

2αk+1
∥Axk+1 + By − b∥2 + 1

2αk+1
∥y − ỹk∥2

}
,

(4.20)
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where λ̄k = λk − α−1
k (Axk + Byk − b). This implies

yk+1 = projΣ
(
1

2

(
ỹk + αk+1B⊤λ̄k − B⊤(Axk+1 − b)

))
.

Algorithm 3 Simplified accelerated proximal ADMM for solving (4.1)
Input: x0, y0 ∈ RJ .
1: Set x−1 = x0, y−1 = u0 = y0.
2: for k = 0, 1, . . . do
3: Set (x̃k, ỹk) =

2k + 2

k + 2
(xk,yk)−

k

k + 2
(xk−1,yk−1).

4: Set zk = c̃+ (k + 1)(yk − uk) + (k + 2)(x̃k −A⊤(Buk − b)).
5: Update xk+1 =

(
σĨ + (k + 2)(I +AA)

)−1
(zk) by (4.6)–(4.8).

6: Update yk+1 = projΣ
[
1
2

(
ỹk − B⊤(Axk+1 − b)

)]
.

7: Update (vk+1,uk+1) = (k + 2)(xk+1,yk+1)− (k + 1)(xk,yk).
8: end for

The iteration procedure (4.17) has been summarized in Algorithm 2. By
(4.18), it holds that

αk+1 − αk = −αkαk+1 for all k ∈ N. (4.21)

Observing this and (4.17c), we have

λk+1 − α−1
k+1(Axk+1 + Byk+1 − b) = λk − α−1

k (Axk + Byk − b). (4.22)

Therefore, if λ0 = Ax0 + By0 − b, then λk = α−1
k (Axk + Byk − b) and

the sequence {λk} can be dropped. For the sale of implementation, we give
a simplified version (see Algorithm 3) of Algorithm 2 and then present the
nonergodic convergence rate analysis.

4.3.2. Proof of the nonergodic rate

Correspondingly, the Lyapunov function (3.24) is modified as follows

Ek := L(xk,yk,λ
∗)− L(x∗,y∗,λk) + αk ∥uk − y∗∥2

+
αk

2

(
∥vk − x∗∥2 + ∥λk − λ∗∥2

)
,

(4.23)

where (x∗,y∗,λ∗) ∈ Ω∗ is arbitrary.
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Lemma 4.3.1. Let {(xk,yk,λk)} be generated by Algorithm 2, then we have
the contraction

Ek+1 − Ek ⩽ −αkEk+1 for all k ∈ N, (4.24)

which implies Ek ⩽ E0/(k + 1) for k ⩾ 0.

Proof. From (4.21) and (4.24) it is clear that

Ek+1 ≤
Ek

1 + αk

=
αk+1

αk

Ek =⇒ Ek ⩽
αk

α0

E0 =
E0

k + 1
.

Let us focus on (4.24) and calculate the difference Ek+1−Ek = I1+I3+I4+I2,
where 

I1 := L(xk+1,yk+1,λ
∗)− L(xk,yk,λ

∗),

I2 :=
αk+1

2
∥λk+1 − λ∗∥2 − αk

2
∥λk − λ∗∥2 ,

I3 :=
αk+1

2
∥vk+1 − x∗∥2 − αk

2
∥vk − x∗∥2,

I4 := αk+1 ∥uk+1 − y∗∥2 − αk ∥uk − y∗∥2 .

In what follows, we shall estimate the above four terms one by one.
Since {yk} ⊂ Σ, it is clear that

I1 = f(xk+1)− f(xk) + ⟨λ∗,A(xk+1 − xk) + B(yk+1 − yk)⟩ .

By (4.17b) and (4.17d), we have
xk+1 − x̃k

αk+1

=−∇f(xk+1)−A⊤λ̃k+1,

yk+1 − ỹk

αk+1

∈ −NΣ(yk+1)− B⊤λk+1,

which implies that
f(xk+1)− f(x) +

〈
λ̃k+1,A(xk+1 − x)

〉
≤
〈
xk+1 − x̃k

αk+1
,x− xk+1

〉
,

⟨λk+1,B(yk+1 − y)⟩ ⩽
〈
yk+1 − ỹk

αk+1
,y − yk+1

〉
,

(4.25)

for all x ∈ RJ and y ∈ Σ. Taking x = xk and y = yk and observing that

xk+1 − x̃k = αk+1(vk+1 − vk) and yk+1 − ỹk = αk+1(uk+1 − uk), (4.26)
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we obtain the estimate for I1:

I1 ⩽ ⟨vk+1 − vk,xk − xk+1⟩+ 2 ⟨uk+1 − uk,yk − yk+1⟩

−
〈
λ̃k+1 − λ∗,A(xk+1 − xk) + B(yk+1 − yk)

〉
,

where we used the relation λk+1−λ̃k+1 = B(uk+1−uk) and the fact B⊤B = I.
Analogously to (3.29), by (4.21), it holds that

I2 = αk

〈
Avk+1 + Buk+1 − b, λ̃k+1 − λ∗

〉
− αkαk+1

2
∥λk+1 − λ∗∥2

+
αk

2

(∥∥∥λk+1 − λ̃k+1

∥∥∥2 − ∥∥∥λk − λ̃k+1

∥∥∥2) .

Similarly with (3.30), we have

I3 =− αk

2
∥vk+1 − vk∥2 −

αkαk+1

2
∥vk+1 − x∗∥2

+ αk ⟨vk+1 − vk,vk+1 − x∗⟩ .

Recalling that vk+1 = xk+1 + α−1
k (xk+1 − xk) (cf.(4.17a)), we have

I3 =− αk

2
∥vk+1 − vk∥2 −

αkαk+1

2
∥vk+1 − x∗∥2

+ ⟨vk+1 − vk,xk+1 − xk⟩+ αk ⟨vk+1 − vk,xk+1 − x∗⟩ .

The term I4 can be derived similarly

I4 =− αk∥uk+1 − uk∥2 − αkαk+1∥uk+1 − y∗∥2

+ 2 ⟨uk+1 − uk,yk+1 − yk⟩+ 2αk ⟨uk+1 − uk,yk+1 − y∗⟩ .

By (4.25) and (4.26), letting x = x∗ and y = y∗ gives

⟨vk+1 − vk,xk+1 − x∗⟩+ 2 ⟨uk+1 − uk,yk+1 − y∗⟩

⩽ L(xk+1,yk+1, λ̃k+1)− L(x∗,y∗, λ̃k+1)

= L(xk+1,yk+1,λ
∗)− L(x∗,y∗,λk+1)−

〈
λ̃k+1 − λ∗,Axk+1 + Byk+1 − b

〉
.

Combining all together yields that

Ek+1 − Ek ⩽ −αkEk+1 −
αk

2

(∥∥∥λk+1 − λ̃k+1

∥∥∥2 + ∥∥∥λk − λ̃k+1

∥∥∥2) .

This gives (4.24) and concludes the proof of this lemma. □
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Theorem 4.3.1. Let {(xk,yk,λk)} be generated by Algorithm 2, then for all
k ∈ N, we have {yk} ⊂ Σ and

∥Axk + Byk − b∥ ⩽ R0

k + 1
, (4.27a)

|f(xk)− f(x∗)| ⩽ 1

k + 1
(E0 + ∥λ∗∥R0) , (4.27b)

where R0 = ∥Ax0 + By0 − b∥+ ∥λ∗ − λ0∥+
√
2E0.

Proof. In view of (4.22), it holds that

λk − α−1
k (Axk + Byk − b) = λ0 − (Ax0 + By0 − b).

Thus, following the proof of (3.36), it is not hard to establish (4.27). □

Remark 4.3.1. Similarly with Algorithm 1, the total cost of Algorithm 2 (and
Algorithm 3) per iteration is O(mn). Therefore, according to Theorem 4.3.1,
the final operation complexity is O(mn/ϵ).

4.4. Numerical Experiments
In this section, we compare Algorithm 1 (Prox-ADMM) and Algorithm 3

(Acc-ADMM) with four baseline algorithms: PADMM [99, Algorithm 3.1],
ALADMM-NE [71, Algorithm 1], Sinkhorn’s algorithm [2] and APDAGD [38,
Algorithm 3]. We consider the discrete optimal transport (1.2) and conduct
three experiments with different cost matrices: the random cost (4.28), the
{0, 1}-valued cost (4.29) and the lp-cost (4.30).

Note that our Acc-ADMM is parameter free. For PADMM, we choose
ρ0 = 2 and γk = 1; for ALADMM-NE we set τ = 0.9 and let it share the
same penalty parameter σ with Prox-ADMM; for Sinkhorn’s algorithm and
APDAGD, we chose different regularization parameter δ. To illustrate the
convergence performances, we introduce two relative residuals:

resobj(k) :=
|f(xk)− f ∗|
1 + |f(x0)|

and resfea(k) :=
∥Axk + Byk − b∥
∥Ax0 + By0 − b∥

,

where the minimal objective value f ∗ is computed exactly for the {0, 1}-
valued cost matrix and approximately via running sufficient enough iterations
of Prox-ADMM for other two cases.
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Example 1: Random cost. In the first example, we consider the random
cost

C = (Cij)n×n , Cij ∼ U([0, 1]), (4.28)

where U([0, 1]) denotes the uniform distribution on [0, 1]. Numerical outputs
are reported in Fig. 4.1, which indicates that Prox-ADMM outperforms other
methods but we haven’t observed the linear convergence. As expected, the
errors of Acc-ADMM and PADMM share the same theoretical rate O(1/k)

while Acc-ADMM has smaller residual of feasibility violation than PADMM.
The residuals of Sinkhorn’s algorithm and APDAGD decrease quickly but
stay flat only with a fixed accuracy O(δ). We are not allowed to reduce δ as
small as we can because of the round-off error and numerical instability. In
addition, small regularization parameter δ also enlarges the iteration numbers
for achieving the tolerance O(δ).
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Figure 4.1: Performances of different algorithms with n = 500 and the random
cost (4.28).
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Example 2: The {0, 1}-valued cost. We then consider a special cost

C = 1n×n − I, Cij = δi ̸=j. (4.29)

According to [89, Section 2.6] or [101, Section 7.1], this corresponds to the
Wasserstein distance of order 0 and the optimal transportation cost between
µ and ν is the half of the l1-norm of their difference, which means that
f ∗ = 1

2
∥µ− ν∥1.

From Fig. 4.2 we observe again that Prox-ADMM performs better than
others and local linear convergence arises. The convergence behaviors of Acc-
ADMM and PADMM are still very similar. As the same in the first example,
for a given regularization parameter δ, Sinkhorn’s algorithm and APDAGD
only provide solutions with fixed accuracy O(δ), and in this example, those
two methods behave very closely to each other, apart from the fact that
Sinkhorn’s algorithm converges more quickly in few initial steps.
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Figure 4.2: Performances of different algorithms with n = 400 and the {0, 1}-
valued cost (4.29).
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Figure 4.3: n = 300, Cij = ∥xi − yj∥, where xi and yj are sampled from U([0, 1]10).

Example 3: The lp-cost. Let µ, ν ∈ Rn
+ be associated with two distribu-

tions µ =
∑n

i=1 µiδxi
and ν =

∑n
j=1 νjδyj , where xi and yj are sampled from

the uniform distribution U([0, 1]m). In this example, we consider the lp-cost

C = (Cij)n×n , Cij = ∥xi − yj∥p , (4.30)

where 1 ⩽ p < ∞. We are interested in two cases: p = 1 and p = 2, and plot
the corresponding numerical results in Figs. 4.3 and 4.4.

We see that in this case, Prox-ADMM, Acc-ADMM and PADMM pos-
sess similar decay rates for the objective residual and the feasibility violation.
For ALADMM-NE, the feasibility violation converges much faster than its
objective residual. This agrees with the numerical results in the previous
two examples. Besides, analogously to what showed in Fig. 4.1, APDAGD
is not competitive with Sinkhorn’s algorithm, and the total iteration num-
ber for achieving the accuracy O(δ) grows as the regularization parameter δ
decreases.
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Figure 4.4: n = 500, Cij = ∥xi − yj∥2, where xi and yj are sampled from U([0, 1]5).

49



Chapter 5

An Inexact SsN-AMG-based
Primal-Dual Algorithm

In this chapter, we apply the implicit Euler scheme (3.1) to the general-
ized transportation problem (1.8). For practical computations, in Section 5.1,
we propose an inexact version and adopt the semi-smooth Newton method
for the subproblem (3.6). Then, in Section 5.2, the linear equation for updat-
ing the Newton iteration is transformed equivalently into a graph Laplacian
system, for which an efficient algebraic multigrid method shall be presented
in Section 5.3. Finally, several numerical tests are reported in Section 5.4.

5.1. Inexact SsN-based Primal-Dual Method
For λ ∈ RM+l and x = (x, y, z) ∈ Rmn×Rn×Rm, define the Lagrangian

function for (1.8):

L(x, λ) := f(x) + δΣ(x) + ⟨λ,Hx− b⟩ , (5.1)

where H = (G, IY , IZ). Notice that L(·, λ) is convex and we set ∂xL(x, λ) :=
∇f(x)+NΣ(x)+H⊤λ, where ∇f(x) = σ(x, 0M)− c̃ with c̃ = (σϕ− c, 0M).
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5.1.1. An inexact primal-dual algorithm

Applying (3.1) to problem (1.8) gives

θk
λk+1 − λk

αk

= ∇λL(vk+1, λk+1), (5.2a)
xk+1 − xk

αk

= vk+1 − xk+1, (5.2b)

θk
vk+1 − vk

αk

∈ −∂xL (xk+1, λk+1) , (5.2c)

where αk > 0 denotes the step size and the parameter sequence {θk} is
updated by

θk+1 − θk = −αkθk+1, θ0 = 1. (5.3)

By (5.2b), we replace vk+1 by xk+1 and then put it into (5.2a) and (5.2c) to
obtain {

θk+1λk+1 = Hxk+1 + λ̃k, (5.4a)

Dkxk+1 ∈ x̃k −H⊤λk+1 −NΣ(xk+1), (5.4b)

where Dk = diag(ηkImn, τkIn, τkIm) and
x̃k = c̃+ θk(xk + αkvk)/α

2
k,

ηk = σ + τk, τk = θk(1 + αk)/α
2
k,

λ̃k = θk+1

[
λk − θ−1

k (Hxk − b)
]
− b.

From (5.4b) we have xk+1 = projΣ
(
D−1

k (x̃k −H⊤λk+1)
)
. Plugging this

into (5.4a) gives a nonlinear equation

Fk(λk+1) = 0, (5.5)

where the mapping Fk : RM+l → RM+l is defined by

Fk(λ) := θk+1λ−HprojΣ
(
D−1

k (x̃k −H⊤λ)
)
− λ̃k ∀λ ∈ RM+l. (5.6)

It is well-known that projΣ is monotone and 1-Lipschitz continuous (cf. [7,
Proposition 12.27]). Letter in Section 5.1.3, we will see that (5.5) is nothing
but the Euler equation for minimizing a smooth and strongly convex objective
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(see (5.20)). Therefore it admits a unique solution which is denoted by λ#
k+1

(in stead of λk+1), and we obtain

x#
k+1 = projΣ

(
D−1

k (x̃k −H⊤λ#
k+1)

)
, v#

k+1 = x#
k+1 +

x#
k+1 − xk

αk

. (5.7)

This means (x#
k+1,v

#
k+1, λ

#
k+1) is the exact solution to the implicit scheme

(5.2a) at the k-th step.
In practical computations, however, the inner problem (5.5) is often

solved approximately. Below, we summarize our inexact primal-dual method
in Algorithm 4. Then in Sections 5.1.2 and 5.1.3, we will present the conver-
gence analysis and apply the semi-smooth Newton iteration (Algorithm 5)
to solve the nonlinear equation (5.5).

According to Theorem 5.1.1, the convergence rate is related to the step
size αk and we provide detailed discussions in Remarks 5.1.1 and 5.1.2. In
addition, the stop criterion in step 6 of Algorithm 4 is convenient for the
upcoming convergence rate proof but not practical as it requires the true so-
lution λ#

k+1. In numerical experiments, we focus on the quantity ∥Fk(λk+1)∥,
which provides a computable posterior indicator.

Algorithm 4 Inexact Primal Dual Method for (1.8)
Input: θ0 = 1, v0, x0 ∈ Rmn × Rn × Rm and λ0 ∈ RM+l.
1: for k = 0, 1, . . . do
2: Choose the step size αk > 0 and the tolerance ϵk > 0.
3: Set τk = θk(1 + αk)/α

2
k and ηk = σ + τk.

4: Set Dk = diag(ηkImn, τkIn, τkIm) and x̃k = c̃+ θk(xk + αkvk)/α
2
k.

5: Update θk+1 = θk/(1+αk) and set λ̃k = θk+1

[
λk − θ−1

k (Hxk − b)
]
− b.

6: Apply Algorithm 5 to (5.5) to obtain λk+1 such that ∥λk+1−λ#
k+1∥ ≤ ϵk.

7: Update xk+1 = projΣ
(
D−1

k (x̃k −H⊤λk+1)
)
.

8: Update vk+1 = xk+1 + (xk+1 − xk)/αk.
9: end for
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5.1.2. Rate of convergence

Let {(θk,xk,vk, λk)} be generated by Algorithm 4 with {αk} and {ϵk}. It
is clear that {xk} ⊂ Σ. Following (3.7), define a discrete Lyapunov function

E(θk,xk,vk, λk) := L(xk, λ
∗)−L(x∗, λk)+

θk
2

(
∥vk − x∗∥2 + ∥λk − λ∗∥2

)
, (5.8)

and for simplicity, we write Ek = E(θk,xk,vk, λk).
According to Theorem 3.1.1, we have

E#
k+1 − Ek ≤ −αkE#

k+1, (5.9)

where E#
k+1 := E(θk+1,x

#
k+1,v

#
k+1, λ

#
k+1) and (x#

k+1,v
#
k+1, λ

#
k+1) is the exact

solution to the implicit Euler discretization (5.2a) at the k-th iteration. This
also implies that

Ek+1 −
Ek

1 + αk

= Ek+1 − E#
k+1 + E#

k+1 −
Ek

1 + αk

≤ Ek+1 − E#
k+1, (5.10)

which leads to the following one-iteration estimate.

Lemma 5.1.1. Let (θk+1,xk+1,vk, λk+1) be the output of the k-th iteration
of Algorithm 4 with (θk,xk, λk) and (αk, ϵk). Then we have

Ek+1 ≤
Ek

1 + αk

+ ϵkθ
−1
k α2

k ∥H∥
(
σ ∥x∗∥+

∥∥H⊤λ∗ − c̃
∥∥)+ ϵkθk ∥λk+1 − λ∗∥

+ ϵkθ
−1
k

(
σα2

k ∥H∥ ∥xk+1 − x∗∥+ αkθk ∥H∥ ∥vk+1 − x∗∥
)
.

(5.11)

Proof. Thanks to (5.10), it is sufficient to focus on the difference

Ek+1 − E#
k+1

= L(xk+1, λ
∗)− L(x#

k+1, λ
∗) +

θk+1

2

(
∥vk+1 − x∗∥2 − ∥v#

k+1 − x∗∥2
)

+
θk+1

2

(
∥λk+1 − λ∗∥2 − ∥λ#

k+1 − λ∗∥2
)
.

(5.12)

Since projΣ is 1-Lipschitz continuous and

xk+1 = projΣ
(
D−1

k (x̃k −H⊤λk+1)
)
, x#

k+1 = projΣ
(
D−1

k (x̃k −H⊤λ#
k+1)

)
,
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it follows from the fact
∥∥D−1

k

∥∥ ≤ 1/τk that

||xk+1 − x#
k+1|| ≤

1

τk
||H⊤(λk+1 − λ#

k+1)|| ≤
ϵkθ

−1
k α2

k

1 + αk

∥H∥ . (5.13)

By (5.7), we have v#
k+1 = x#

k+1 + (x#
k+1 − xk)/αk, which together with the

update for vk+1 in Algorithm 4 yields the identity vk+1 − v#
k+1 = (1 +

1/αk)(xk+1 − x#
k+1). Hence it holds that

||vk+1 − v#
k+1|| ≤

αk + 1

αk

||xk+1 − x#
k+1|| ≤ ϵkθ

−1
k αk ∥H∥ ,

which gives

∥vk+1 − x∗∥2 − ∥v#
k+1 − x∗∥2

= 2⟨vk+1 − x∗,vk+1 − v#
k+1⟩ − ∥vk+1 − v#

k+1∥
2 ≤ 2ϵkθ

−1
k αk ∥H∥ ∥vk+1 − x∗∥ .

Similarly, we have

∥λk+1 − λ∗∥2 − ∥λ#
k+1 − λ∗∥2 ≤ 2ϵk ∥λk+1 − λ∗∥ .

Plugging the above two estimates into (5.12) implies

Ek+1 − E#
k+1 ≤ L(xk+1, λ

∗)− L(x#
k+1, λ

∗)

+ ϵkαk ∥H∥ ∥vk+1 − x∗∥+ ϵkθk ∥λk+1 − λ∗∥ ,
(5.14)

where we used the relation θk+1 ≤ θk.
To the end, let us estimate the first difference term in (5.14) as follows.

It is clear that

f(xk+1)−f(x#
k+1) = σ⟨xk+1−x#

k+1, xk+1⟩−⟨c̃,xk+1−x#
k+1⟩−

σ

2
∥xk+1−x#

k+1∥
2.

Invoking (5.13) and the fact x#
k+1, xk+1 ∈ Σ, we find

L(xk+1, λ
∗)− L(x#

k+1, λ
∗) = f(xk+1)− f(x#

k+1) + ⟨H⊤λ∗,xk+1 − x#
k+1⟩

≤
(
σ ∥xk+1∥+

∥∥H⊤λ∗ − c̃
∥∥) ∥xk+1 − x#

k+1∥

≤ ϵkθ
−1
k α2

k ∥H∥
(
σ ∥xk+1∥+

∥∥H⊤λ∗ − c̃
∥∥) .

Combining this with (5.14) and the triangle inequality ∥xk+1∥ ≤ ∥x∗∥ +

∥xk+1 − x∗∥, we obtain (5.11) and complete the proof. □
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To derive the concrete convergence rate of Algorithm 4, let us introduce

ε̂k :=
k−1∑
i=0

ϵiα
2
i θ

−2
i and ε̃k :=

k−1∑
i=0

ϵiθ
−3/2
i (α2

i + αi

√
θi + θ

3/2
i ), k ≥ 1,

and for k = 0, set ε̂0 = ε̃0 = 0.

Theorem 5.1.1. Let {xk} = {(xk, yk, zk)} ⊂ Σ and {λk} be generated by
Algorithm 4 with arbitrary step size sequence {αk} and tolerance sequence
{ϵk}. Then for all k ∈ N, there holds that

L(xk, λ
∗)− L(x∗, λk) + ∥Hxk − b∥+ |f(xk)− f(x∗)|

≤
(
C1(
√

ε̂k) + C2(ε̃k)
)
×

k−1∏
i=0

1

1 + αi

,
(5.15)

where both C1(·) and C2(·) are quadratic functions.

Proof. Based on (5.11) and the proof of [79, Lemma 3.3], we are ready to
establish

L(xk, λ
∗)− L(x∗, λk) ≤ Ek ≤ θk

(√
E0 + Zε̂k +

√
2Qε̃k

)2
, (5.16)

where Z := ∥H∥
(
σ ∥x∗∥+

∥∥H⊤λ∗ − c̃
∥∥) and Q := 1+ (1+

√
σ) ∥H∥. Since

xk ∈ Σ, we have

0 ≤ f(xk)− f(x∗) + ⟨λ∗, Hxk − b⟩ = L(xk, λ
∗)− L(x∗, λk) ≤ Ek ≤ θkR

2
k,

where Rk :=
√
E0 + Zε̂k +

√
2Qε̃k, and it follows immediately that

|f(xk)− f(x∗)| ≤ θkR
2
k + ∥λ∗∥ ∥Hxk − b∥ , (5.17)

Below, we aim to prove

∥Hxk − b∥ ≤ θk

(
∥Hx0 − b∥+ ∥λ0 + λ∗∥+

√
2Rk + ∥H∥2 ε̂k + ε̃k

)
, (5.18)

which together with (5.16) and (5.17) proves (5.15). Note that (x#
k+1,v

#
k+1, λ

#
k+1)

is the exact solution to the implicit Euler discretization (5.2a) at the k-th
iteration and by (5.2a) we have

λ#
k+1 − λk = αk/θk(Hv#

k+1 − b) = θ−1
k+1(Hx#

k+1 − b)− θ−1
k (Hxk − b) .
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Therefore, a rearrangement gives

λk+1 − λk = Ek + θ−1
k+1 (Hxk+1 − b)− θ−1

k (Hxk − b) ,

where Ek := λk+1 − λ#
k+1 + θ−1

k+1H(x#
k+1 − xk+1). This also leads to

λk − λ0 = θ−1
k (Hxk − b)− (Hx0 − b) +

k−1∑
i=0

Ei,

and we get

∥Hxk − b∥ ≤ θk

(
∥Hx0 − b∥+ ∥λk − λ0∥+

k−1∑
i=0

∥Ei∥

)
.

Invoking (5.13) implies

∥Ek∥ ≤ ∥λk+1 − λ#
k+1∥+ θ−1

k+1 ∥H∥ ∥x#
k+1 − xk+1∥ ≤ ϵk

(
1 + α2

kθ
−2
k ∥H∥2

)
,

and using the estimate (5.16) promises that ∥λk − λ∗∥ ≤
√
2Rk. Conse-

quently, we obtain (5.18) and finish the proof of this theorem. □
According to (5.15), the final rate is obtained as long as the step size αk

and the error ϵk are specified. Two examples are given in order.

Remark 5.1.1. Consider non-vanishing step size αk ≥ α̂ > 0. If ϵk =

O(θ
3/2
k /(k + 1)p) with p > 1, then ε̃k < ∞ and

√
θkε̂k < ∞. By (5.15) and

the fact that both C1(·) and C2(·) are quadratic functions, we obtain the final
rate

θk

(
C1(
√

ε̂k) + C2(ε̃k)
)
≤ C3(α

max
k )

√
θk,

where αmax
k = max0≤i≤k−1{αi} and C3(·) is a quartic function. Therefore, we

have at least linear rate since θk ≤ (1 + α̂)−k, and superlinear convergence
follows provided that αk → ∞.

Remark 5.1.2. We then consider vanishing step size αk → 0. In particular,
assume α2

k = (k+1)pθ3kθ
−2
k+1 with p > 0, then an elementary calculation yields

that θk = O(1/(k+1)2+p) and αk = O(1/(k+1)). Hence, if ϵk = O(1/(k+1)q)

with q > 3 + 2p, then ε̂k + ε̃k < ∞ and we have the sublinear rate

θk

(
C1(
√
ε̂k) + C2(ε̃k)

)
= O(1/(k + 1)2+p), with any p > 0.
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5.1.3. An SsN method for the subproblem (5.5)

For δΣ(x) = δX (x) + δY(y) + δZ(z), define its Moreau–Yosida approxi-
mation

[δΣ](x) := min
v∈Σ

1

2
∥v − x∥2Dk

∀x ∈ Rmn × Rn × Rm, (5.19)

and introduce Fk : RM+l → R by that

Fk(λ) :=
θk+1

2
∥λ∥2 − ⟨λ̃k, λ⟩+

1

2

∥∥x̃k −H⊤λ
∥∥2
D−1

k

− [δΣ]
(
D−1

k (x̃k −H⊤λ)
)
.

(5.20)
Note that Fk is strongly convex and continuous differentiable with ∇Fk = Fk,
where Fk has been defined in (5.6). Indeed, according to [7, Proposition
12.29], [δΣ](·) is continuous differentiable and ∇[δΣ](x) = Dk(x− projΣ(x)).
Moreover, by Moreau’s decomposition [7, Theorem 14.3 (ii)]

x = projΣ(x) +D−1
k proxDkδ

∗
Σ
(Dkx),

we also find that

Fk(λ) =
θk+1

2
∥λ∥2 − ⟨λ̃k, λ⟩+ δ∗Σ

(
proxDkδ

∗
Σ
(x̃k −H⊤λ)

)
+

1

2

∥∥projΣ(D−1
k (x̃k −H⊤λ))

∥∥2
Dk

,

(5.21)

where δ∗Σ(x) is the conjugate function of δΣ(x) and Dkδ
∗
Σ is understood as

ηkδ
∗
X + τk(δ

∗
Y + δ∗Z).

As Σ = {x ∈ RJ : σ1,i ≤ xi ≤ σ2,i} is a box region, projΣ is piecewise
affine and strongly semismooth (cf. [40, Propositions 4.1.4 and 7.4.7]), and
so is Fk (see [40, Proposition 7.4.4]). Denote by ∂projΣ(x) the Clarke subd-
ifferential [31, Definition 2.6.1] of the proximal mapping projΣ at x. Thanks
to [76, Table 3], we have

∂projΣ(x) :=

diag(χ) : χi ∈


{1} ifσ1,i < xi < σ2,i

[0, 1] if xi ∈ {σ1,i, σ2,i} and σ1,i ̸= σ2,i

{0} if xi ≤ σ1,i or xi ≥ σ2,i

 .

(5.22)
For every λ ∈ RM+l, let Uk(λ) ∈ ∂projΣ

(
D−1

k (x̃k −H⊤λ)
)

and define
an SPD matrix

Jk(λ) := θk+1I +HD−1
k Uk(λ)H

⊤. (5.23)
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Then the semi-smooth Newton (SsN) iteration for (5.5) reads as follows{
Jk(λ

j)ξ = −Fk(λ
j), (5.24a)

λj+1 = λj + ξ. (5.24b)
Since Fk is strongly semismooth, there has local quadratic convergence [90,
91]. Below, we summarize the SsN method in Algorithm 5, where a line
search procedure [36] is supplemented for global convergence.

Algorithm 5 SsN method for (5.5)
Input: τ ∈ (0, 1/2), δ ∈ (0, 1) and λ ∈ RM+l.
1: for j = 0, 1, . . . do
2: Set λold = λ and zk = D−1

k (x̃k −H⊤λ).
3: Compute Uk(λ) ∈ ∂projΣ (zk) by (5.22).
4: Solve the linear SPD system Jk(λ)ξ = −Fk(λ).
5: Find the smallest ℓ ∈ N such that Fk(λold + δℓξ) ≤ Fk(λold) +

τδℓ ⟨Fk(λold), ξ⟩.
6: Update λ = λold + δℓξ.
7: end for

To update the SsN iteration, we have to solve a linear SPD system in
(5.24a). In Section 5.2, we shall explore its hidden graph structure and ob-
tain an equivalent graph Laplacian system, for which an efficient and robust
algebraic multigrid method will be proposed in Section 5.3.

5.2. An Equivalent Graph Laplacian System

5.2.1. The reduced problem

Recall that H = (G, IY , IZ), where G, IY and IZ are defined in (1.9).
Let us rewrite (5.24a) in a generic form

Hξ = (ϵI +H0)ξ = z, (5.25)

where

H0 =

(
diag (t) + Tdiag (s)T⊤ Tdiag (s)Π⊤

Πdiag (s)T⊤ Πdiag (s)Π⊤

)
, (5.26)
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with s ∈ Rmn
+ and t ∈ RM

+ . Let S = diag (s) and K = diag (t) and write
ξ = (ξ1, ξ2) and z = (z1, z2), then (5.25) is equivalent to(ϵI +K + TST⊤)ξ1 + TSΠ⊤ξ2 = z1,

ΠST⊤ξ1 + (ϵI +ΠSΠ⊤)ξ2 = z2.

Additionally, this givesξ1 =
(
T −ΨΠ̃−1Ψ⊤

)−1 (
z1 −ΨΠ̃−1z2

)
,

ξ2 = Π̃−1
(
z2 −Ψ⊤ξ1

)
,

where T = ϵI + K + TST⊤ ∈ RM×M , Π̃ = ϵI + ΠSΠ⊤ ∈ Rl×l and Ψ =

TSΠ⊤ ∈ RM×l.
Assume l is small, then Π̃ is easy to invert. This is true for all transport-

like problems listed in Section 1.1.3. Indeed, for partial optimal transport
(1.6), Π̃ is a constant (l = 1) and for other problems, Π̃ is just a vacuum
(l = 0). Moreover, thanks to Sherman–Woodbury formula, we have(

T −ΨΠ̃−1Ψ⊤
)−1

= T −1 + T −1Ψ
(
Π̃−Ψ⊤T −1Ψ

)−1

Ψ⊤T −1.

Since Π̃ − Ψ⊤T −1Ψ ∈ Rl×l is invertible with small size, what we shall pay
attention to is the inverse of T , which corresponds to the reduced linear
system

T ξ = (ϵI +K + TST⊤)ξ = z. (5.27)

5.2.2. An equivalent graph Laplacian

Let Y ∈ Rm×n be such that vec(Y ) = s, then a direct computation
yields that

T0 := TST⊤ =


diag

(
Y ⊤1m

)
Y ⊤

Y diag (Y 1n)

 . (5.28)

Besides, set Q = diag (In,−Im) and define A0 := QT0Q ∈ RM×M , then T0

is spectrally equivalent to A0 and a direct calculation gives

A0 =

(
diag(Y ⊤1m) −Y ⊤

−Y diag(Y 1n)

)
.
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Note that A0 is the Laplacian matrix of the bipartite graph G = (V , E , w),
where w = vec(Y ), V = V1 ∪ V2 with V1 = {1, 2, · · · , n} and V2 = m + V1,
and E = {e = {i, j} : w(i−1)m+j−n > 0, i ∈ V1, j ∈ V2}. Consequently the
reduced linear system (5.27) now is equivalent to

Au = (ϵI +K +A0)u = Qz, (5.29)

where K = diag (t) is diagonal with nonnegative components t ∈ RM
+ .

Clearly, if u solves (5.29), then the solution to (5.27) is given by ξ = Qu.

Remark 5.2.1. Recall that vec(Y ) = s ∈ Rmn
+ . In view of (5.23), we claim

that the sparsity pattern of s (and thus Y ) is related to that of {xk}k∈N.
Indeed, since xk+1 = projΣ

(
D−1

k (x̃k −H⊤λk+1)
)
, we have

xk+1 = projX
(
η−1
k (x̃k −G⊤λk+1)

)
,

where x̃k is the component of x̃k in X . Since s ∈ ∂projX
(
η−1
k (x̃k −G⊤λk+1)

)
,

by (5.4a) and (5.22), we conclude that s is very close to the sparsity pattern
of xk+1. Moreover, as xk converges to an optimal transport plan, saying X∗,
the sparsity pattern of Y agrees with that of X∗.

5.2.3. A hybrid framework

We now discuss how to solve the linear SPD system (5.29). If the bipar-
tite graph G of A0 has κ connected components, then there is a permutation
matrix P such that

P⊤A0P = diag
(
A1

0, A
2
0, · · · , Aκ

0

)
, (5.30)

where each Ai
0(1 ≤ i ≤ κ) corresponds to the Laplacian matrix of some

connected bipartite graph. Since ϵI +K is diagonal, we are allowed to solve
κ independent linear systems, each of which takes the form

Au = (ϵI + Λ+ A0)u = d, (5.31)

where Λ is diagonal with nonnegative components and A0 ∈ RN×N is a
connected graph Laplacian, with explicit null space: span{1N}. Note that if
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the diagonal part of A0 has zero component, then it can be further reduced.
Thus, without lose of generality, in what follows, assume all diagonal elements
of A0 are positive, which means A0 has no zero row or column since A01N = 0.

Recall that the size of the linear system (5.29) is M -by-M . Therefore,
if N ≤ M1/3, then the solution to (5.31) can be obtained via direct method
within O(N3) ≤ O(M) complexity. Otherwise, we shall consider iterative
methods. This leads to a hybrid approach, as summarized in Algorithm 6.

Algorithm 6 A Hybrid Solver for (5.27): T ξ = z

1: Set Q = diag (In,−Im) , A0 = QT0Q and A = ϵI +K +A0.
2: Check the connected components of A0 and find a permutation matrix

P such that

P⊤AP = diag (A1, A2, · · · , Aκ) and d = P⊤Qz = (d1, d2, · · · , dκ) ,

where Ai ∈ Rni×ni and di ∈ Rni , for all 1 ≤ i ≤ κ.
3: For small component ni ≤ M1/3, invoke direct method (or PCG) to solve

Aiui = di.
4: For large component ni > M1/3, apply iterative solver to Aiui = di.
5: Recover the solution ξ = Qu with (u1, u2, · · · , uκ).

If Λ ̸= O, then A is SPD for all ϵ ≥ 0. When Λ vanishes, A becomes
nearly singular if ϵ is close to zero. This tricky issue increases the number
of iterations of standard solvers like Jacobi iteration, Gauss-Seidel iteration,
and PCG; see our numerical evidence in Table 5.1, and we refer to [67] for
detailed discussions on this. Moreover, standard iterative methods are not
robust concerning the problem size as well, which motivates us to consider
the algebraic multigrid (AMG) algorithm.

5.3. Classical AMG
Multigrid methods are efficient iterative solvers or preconditioners for

large sparse linear SPD systems arising from numerical discretizations of
partial differential equations (PDEs) [13, 26, 27, 52, 70, 100, 104, 105, 106].
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Those linear systems are always ill-conditioned as the mesh size decreases (or
equivalently the problem size increases), and standard stationary iterative
solvers converge dramatically slowly. However, multigrid methods possess
mesh-independent convergence rate and can achieve the optimal complexity.

The basic multigrid ingredients are error smoothing and coarse grid
correction. In the setting of PDE discretizations, the coarse grid is based
on geometric mesh and a multilevel hierarchy can also be constructed easily.
On the other hand, the multigrid idea has been applied to the case where no
geometric mesh is available. In particular, for the graph Laplacian system
(5.31), multilevel hierarchy can still be obtained from the adjacency graph to
A. Then different coarsening techniques and interpolations lead to various
algebraic multigrid algorithms, such as classical AMG and aggregation-based
AMG [12, 18, 110].

5.3.1. Multilevel W -cycle

Let us first present an abstract multilevel W -cycle framework for solving
(5.31). There are two steps: the setup phase and the iteration phase.

In the setup phase, we work with a family of coarse spaces: {Vℓ =

RNℓ}Jℓ=1, where NJ < · · · < Nℓ < · · ·N1 = N , and build some basic ingredi-
ents that include

• Smoothers: Rℓ : RNℓ → RNℓ for all 1 ≤ ℓ ≤ J ;

• Prolongation matrices: Pℓ : RNℓ+1 → RNℓ for 1 ≤ ℓ ≤ J − 1;

• Coarse level operators: A1 = A and Aℓ+1 = P⊤
ℓ AℓPℓ for all 1 ≤ ℓ ≤

J − 1.

The coarsest level size NJ is very small and in practice, NJ = O(N1/3) is
acceptable. The prolongation operators {Pℓ}J−1

ℓ=1 shall be injective, i.e., each
Pℓ ∈ RNℓ×Nℓ+1 has full column rank. Moreover, since A might be nearly
singular, we require that Pℓ1Nℓ+1 = 1Nℓ

, then Aℓ1Nℓ
is close to zero for all

1 ≤ ℓ ≤ J .
In each level, the smoother Rℓ ∈ RNℓ×Nℓ is an approximation to A−1

ℓ

and possesses smoothing property. For ℓ = J , we can choose Rℓ = A−1
ℓ or
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invoke the PCG iteration. For 1 ≤ ℓ < J , let Aℓ = Dℓ +Lℓ +L⊤
ℓ where Dℓ is

the diagonal part and Lℓ is the strictly lower triangular part. Then we can
consider

• Gauss–Seidel: Rℓ = (Dℓ + Lℓ)
−1 for ℓ = 1;

• Weighted Jacobi: Rℓ = ωD−1
ℓ with ω ∈ (0, 1) for 1 ≤ ℓ ≤ J .

For ℓ = 1, thanks to the bipartite graph structure of A1 = A, the Gauss–
Seidel smoother admits explicit expression. Given a smoother Rℓ, to handle
the possibly nearly singular property of Aℓ, we follow [67, 86] and adopt a
special one

R̂ℓ =
ξℓξ

⊤
ℓ

ξ⊤ℓ Aℓξℓ
+Rℓ

(
I − Aℓ

ξℓξ
⊤
ℓ

ξ⊤ℓ Aℓξℓ

)
, (5.32)

where ξℓ = 1Nℓ
is the approximation kernel of Aℓ.

Then in the iteration phase, we run the process

uk+1 = uk + AMG-W(d− Auk, 0, 1), k = 0, 1, · · · , (5.33)

where g = AMG-W(ζ, e, ℓ) is defined by Algorithm 7 in a recursive way.

Algorithm 7 Algebraic Multigrid W -cycle: g = AMG-W(ζ, e, ℓ)
Input: ζ, e ∈ RNℓ , 1 ≤ ℓ ≤ J and θ ∈ N≥1.
1: if ℓ = J then
2: g = e+ R̂ℓ(ζ − Aℓe).
3: else
4: for i = 1, 2, · · · , θ do {Presmoothing}
5: e = e+ R̂ℓ(ζ − Aℓe).
6: end for
7: Restriction: ζℓ+1 = P⊤

ℓ (ζ − Aℓe).
8: Coarse correction: eℓ+1 = AMG-W(ζℓ+1, 0, ℓ+ 1).
9: Coarse correction: eℓ+1 = AMG-W(ζℓ+1, eℓ+1, ℓ+ 1).

10: Prolongation: e = e+ Pℓeℓ+1.
11: for i = 1, 2, · · · , θ do {Postmoothing}
12: e = e+ R̂⊤

ℓ (ζ − Aℓe)

13: end for
14: end if
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Remark 5.3.1. We mention that the number of smoothing iterations θ ∈ N≥1

in Algorithm 7 is fixed and in most cases a small choice, saying θ = 5, works
well. In addition, the coarsening procedure, which will be introduced in the
next section, leads to the reduction Nℓ+1 ≈ Nℓ/2, and thus the total number
of levels is at most J = O(lnN). Consequently, if

(i) the convergence rate ρk of the AMG W -cycle (5.33) is robust, which
means ρ ∈ (0, 1) is independent of the singular parameter ϵ in A and
the problem size N , and

(ii) the matrix-vector operations in each iteration of (5.33) is O(nnz(A)),
where nnz(A) denotes the number of nonzero elements of A,

then to achieve a given tolerance ε, the total computational work of the AMG
W -cycle (5.33) is optimal O(nnz(A)| ln ε|)

5.3.2. Coarsening and interpolation

In this part, we shall construct the prolongation operators {Pℓ}J−1
ℓ=1 . In

the terminology of AMG, it can be done by coarsening and interpolation
[98, 110]. Here, “interpolation” means the operator Pℓ : RNℓ+1 → RNℓ

provides a good approximation from the coarse level RNℓ+1 to the fine level
RNℓ . According to the hierarchy structure, it is sufficient to consider the case
ℓ = 1, which provides a template for coarse levels 1 < ℓ ≤ J .

Maximal independent set

In classical AMG, the coarsening is based on the so-called C\F -splitting.
Recall that A1 = A and N1 = N . Let V = {1, 2, · · · , N} and define the
strength function sA : V × V → R with respect to A by that

sA(i, j) :=
Aij

max{mink∈N (i) Aik, mink∈N (j) Ajk}
∀ (i, j) ∈ V × V , (5.34)

where N (i) := {j ∈ V\{i} : Aij ̸= 0}. Given a threshold δ ∈ (0, 1), we say
i ∈ V and j ∈ V are strongly connected if sA(i, j) > δ. We aim to find a
maximal independent set C = {j1, j2, · · · , jN2} ⊂ V , such that any i ∈ C and
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j ∈ C are not strongly connected, i.e., sA(i, j) ≤ δ. Then C stands for the
collection of coarse nodes and its complement F = V\C = {i1, i2, · · · , iNf}
denotes the set of fine nodes, where Nf = N −N2. Notice that for any i ∈ F ,
C ∩ N (i) is nonempty.

A basic splitting algorithm (cf. [110, Algorithm 5]) has been described
briefly in Algorithm 8. We refer to [98, Appendix A.7] for an variant, where
a measure of importance has been introduced to obtain a reasonable distri-
bution of coarse nodes.

Algorithm 8 C\F -splitting
1: Set the threshold δ ∈ (0, 1).
2: Initialize C = ∅ and F = ∅.
3: Mark all nodes in V as unvisited: U(i) = true for all i ∈ V .
4: for i = 1, 2, · · · , N do
5: if U(i) = true then {i has not been visited}
6: Ns(i) = {j ∈ V : sA(i, j) > δ}.
7: C = C ∪ {i} and F = F ∪Ns(i).
8: U(i) = false and U(k) = false for all k ∈ Ns(i).
9: end if

10: end for

Interpolation operator

Once the C\F -splitting has been done, we can find a permutation matrix
Ξ such that

Ξ⊤AΞ =

(
AFF AFC

A⊤
FC ACC

)
. (5.35)

Then, we can choose (see [110, Section 12.3])

• Ideal interpolation: P = Ξ

(
W

I

)
with W = −A−1

FFAFC .

• Standard interpolation: P = Ξ

(
(I −D−1

FFAFF )W

I

)
with DFF being

the diagonal part of AFF .
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In addition, to satisfy P1N2 = 1N1 , we need additional scaling transform
P1 = diag (P1N2) \P , which leads to the desired prolongation operator from
level ℓ = 2 to level ℓ = 1.

Observing the particular structure of the system (5.31), where A0 is the
Laplacian of some connected bipartite graph, we find

A =

(
AFF AFC

A⊤
FC ACC

)
,

with AFF and ACC being diagonal. This yields an approximate C\F -splitting

F = {1, 2, · · · , nf} and C = nf + {1, 2, · · · , nc},

where nf + nc = N . Note that C might not be a maximal independent set
but provides an approximate ideal interpolation.

However, for ℓ > 1, it is not realistic to expect the bipartite structure
of Aℓ, and to avoid inverting AFF , we shall consider standard interpolation
instead.

5.4. Numerical Tests
This section is devoted to providing essential numerical experiments for

validating the efficiency of our algorithm. In Section 5.4.1, we aim to ver-
ify the robust performance of the AMG W -cycle iteration (5.33) for solving
a nearly singular graph Laplacian system. Then in Section 5.4.2, we apply
the overall semismooth Newton-AMG-based inexact primal-dual method (see
Algorithm 9) to several transport-like problems listed in Section 1.1.3 and
conduct extensive compassions with existing baseline algorithms. All numer-
ical tests are implemented in MATLAB (version R2021a) on a MacBook Air
Laptop.

5.4.1. Performance of AMG

Consider the linear algebraic system

Ax = (ϵI + Ah) x = b. (5.36)
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Here Ah is the stiffness matrix of the conforming bilinear finite element
method [15] for the pure Neumann problem−∆u = g in Ω := (0, 1)2,

∇u · n = 0 on ∂Ω,

where n is the unit outward normal vector of ∂Ω and g : Ω → R is a square
integrable function with vanishing average.

Let Ωh = ∪i Ki be a subdivision of Ω, where each Ki is a square with
edge length h = 2−k, k ∈ N. The stiffness matrix Ah ∈ RNh×Nh corresponds
to Ωh is sparse and symmetric positive semidefinite with Nh = (1 + 1/h)2.
Moreover, Ah is the Laplacian matrix of some connected graph Gh, which
can be obtained from Ωh by adding the two diagonal lines of each element
Ki; see Fig. 5.1.

Figure 5.1: Illustrations of Ωh and Gh.

We apply AMG W -cycle iteration (5.33) and PCG (cf. [94, Algorithm
9.1]) to (5.36) with different ϵ and mesh size h. For PCG, we choose the diag-
onal (Jacobi) preconditioner. For AMG, we adopt weighted Jacobi smoother
Rℓ = 1/2Dℓ and the number of smoothing iteration is θ = 5. Besides, to
obtain a maximal independent set via Algorithm 8 and avoid using the for
loop, we adopt a subroutine from the MATLAB software package: iFEM
[24].
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1/h
ϵ = 10−4 ϵ = 10−6 ϵ = 10−8 ϵ = 10−10 ϵ = 0

itamg itpcg itamg itpcg itamg itpcg itamg itpcg itamg itpcg

24 9 62 10 66 9 69 9 52 10 52

26 9 230 9 250 9 266 9 201 10 201

28 9 789 9 906 9 969 10 740 9 740

210 9 1427 10 3158 9 3531 10 2680 9 2680
Table 5.1: Number of iterations of AMG and PCG.

In Table 5.1, we report the number of iterations of AMG (cf.itamg) and
PCG (cf.itpcg), under the stop criterion

∥Axk − b∥
∥Ax0 − b∥

⩽ Tol = 10−11.

As we can see, AMG is very robust with respect to both the singular param-
eter ϵ and the problem size Nh. While the number of PCG iterations grows
in terms of Nh. If ϵ is decreasing and larger than Tol, then due to the nearly
singular issue, itpcg also increases. When ϵ is close to (or is smaller than)
Tol, the term ϵI in A is negligible and (5.36) can be viewed almost as a
singular system. In this situation, itpcg tends to the case ϵ = 0. To further
show this dependence on ϵ more clearly, in Fig. 5.2, we plot the number of
iterations for two cases: h = 2−7 and h = 2−9.
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Figure 5.2: Growth behaviors of itamg and itpcg with respect to the parameter ϵ

and the tolerance Tol.
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Except for the number of iterations, we also record two crucial ingre-
dients of the multilevel hierarchy: (i) the number of levels J and (ii) the
operator complexity (opcom for short), i.e.,

opcom :=

∑J
ℓ=1 nnz(Aℓ)

nnz(A)
.

The quantity opcom is often used to measure the computational complexity
of the AMG algorithm. From Table 5.2, we might observe the growth mag-
nitude O(| lnh|), as mentioned in Remark 5.3.1. This is almost negligible
and thus both J and opcom are robust with respect to h and ϵ.

1/h
ϵ = 10−4 ϵ = 10−6 ϵ = 10−8 ϵ = 10−10 ϵ = 0

J opcom J opcom J opcom J opcom J opcom

24 4 1.47 4 1.49 4 1.41 4 1.50 4 1.40

26 5 1.64 5 1.62 5 1.65 5 1.62 5 1.65

28 6 1.66 6 1.68 6 1.67 6 1.67 6 1.66

210 7 1.68 7 1.69 7 1.68 7 1.69 7 1.69

Table 5.2: Number of levels and the operator complexity of AMG.

5.4.2. IPD-SsN-AMG method

Combining Algorithms 4, 5, 6 and 7, we obtain the overall Semismooth
Newton-AMG-based Inexact Primal-Dual (IPD-SsN-AMG for short) method
for solving the generalized transport problem (1.8); see Algorithm 9.
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Algorithm 9 IPD-SsN-AMG method
Input: KKT tolerance: KKT_Tol.

SsN iteration tolerance: SsN_Tol.
Maximal SsN iteration number: jmax ∈ N.
Line search parameters: τ ∈ (0, 1/2), δ ∈ (0, 1).
Initial guesses: β0 > 0, λ0 ∈ Rm+n+l and x0 = v0 ∈ Rmn+n+m.

1: for k = 0, 1, · · · do
2: Choose the step size αk > 0.
3: Set τk = βk(1 + αk)/α

2
k and ηk = σ + τk.

4: Set Dk = diag(ηkImn, τkIn, τkIm) and x̃k = c̃+ βk(xk + αkvk)/α
2
k.

5: Update βk+1 = βk/(1+αk) and set λ̃k = βk+1

[
λk − β−1

k (Hxk − b)
]
−b.

6: Set λnew = λk.
7: for j = 0, 1, · · · do {SsN iteration}
8: Set λold = λnew and zk = D−1

k (x̃k −H⊤λnew).
9: Compute the diagonal matrix Uk ∈ ∂projΣ (zk) from (5.22).

10: Transform the linear equation

Jkζ =
(
βk+1I +HD−1

k UkH
⊤) ζ = −Fk(λold)

into the reduced graph Laplacian system (5.29).
11: Apply Algorithms 6 and 7 to (5.29) and recover the solution ζ.
12: Update λnew = λold+δℓζ with the smallest nonnegative integer ℓ ∈ N

that satisfies Fk(λold + δℓζ) ≤ Fk(λold) + τδℓ ⟨Fk(λold), ζ⟩.
13: if ∥Fk(λnew)∥ ≤ SsN_Tol or j ≥ jmax then
14: break
15: end if
16: end for
17: Update λk+1 = λnew and xk+1 = projΣ (zk).
18: Update vk+1 = xk+1 + (xk+1 − xk)/αk.
19: if Res(k + 1) ⩽ KKT_Tol then {Check the KKT residual}
20: break
21: end if
22: end for
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Detailed parameter choices and operations of Algorithm 9 are explained
in order.

In step 11, the settings of the AMG W -cycle are the same as that in
Section 5.4.1. Note that Algorithm 6 requires the connected components of
the graph G = (V , E) with respect to the Laplacian matrix A0 in (5.29).
This can be done by using graph searching algorithms [59] such as breadth
first search (with the complexity O(|V||E|)) and depth first search (with the
complexity O(|E|) = O(nnz(A0))). Thanks to the bipartite structure, we
adopt the MATLAB built-in function dmperm that provides the Dulmage–
Mendelsohn decomposition of A0 and also returns the connected components.

For SsN iteration, the line search parameters are τ = 0.2 and δ = 0.9,
and in step 13, it shall be terminated when either j is larger than the maxi-
mal iteration number jmax = 15 or ∥Fk(λnew)∥ is smaller than the tolerance
SsN_Tol = max{βk(k + 1)−2, 10−11}.

Moreover, in step 19 we impose the stop criterion

Res(k) := max
{

KKT(xk)

KKT(x0)
,

KKT(yk)

KKT(y0)
,

KKT(zk)

KKT(z0)
,

KKT(λk)

KKT(λ0)

}
≤ KKT_Tol,

(5.37)
where KKT_Tol denotes the tolerance and the KKT residuals are defined by

KKT(xk) :=
∥∥xk − projX (σϕ+ (1− σ)xk − c−G⊤λk)

∥∥ ,
KKT(yk) :=

∥∥yk − projY(yk − I⊤Y λk)
∥∥ ,

KKT(zk) :=
∥∥zk − projZ(zk − I⊤Z λk)

∥∥ ,
KKT(λk) := ∥Gxk + IY yk + IZzk − b∥ .

In the sequel, we investigate the performance of our IPD-SsN-AMG
method on specific problems including optimal transport, Birkhoff projec-
tion and partial optimal transport. Also, comparisons with the semismooth
Newton-based augmented Lagrangian methods proposed in [72, 73] and the
accelerated ADMM Algorithm 3 will be presented, under the same stopping
condition (5.37) with KKT_Tol = 10−6.

The methods in [72, 73] adopts PCG as the linear system solver, and
the (super-)linear convergence analysis is based on classical proximal point
framework together with proper error bound assumption. For convenience,
we abbreviate these two methods simply as ALM-SsN-PCG.
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We note that, as summarized in the introduction part, some other opti-
mization solvers, such as entropy regularization methods and interior-point
methods, can also be applied to transport-like problems considered here.
However, entropy-based methods provide approximate solutions only with a
fixed tolerance, which is almost the same magnitude as the regularization
parameter. Interior-point methods utilize the barrier function and require
linear system solver as well. Hence, it would be interesting to studying the
efficiency comparison between PCG and AMG, and we leave this as our
future topic.

Optimal transport

Let us focus on the optimal mass transport (1.2) with m = n ∈ N. The
mass distributions µ, ν ∈ Rn

+ are generated randomly, and we consider two
kinds of cost matrices:

• Random cost:

C = (Cij)n×n with Cij ∼ U([0, 1]), (5.38)

where U([0, 1]) denotes the uniform distribution on [0, 1];

• Quadratic distance cost:

C = (Cij)n×n with Cij = ∥xi − xj∥2 , (5.39)

where {xi}ni=1 are the grid points in the uniform subdivision of Ω =

(0, 1)2 with mesh size 1/h =
√
n− 1; see Fig. 5.1.

As discussed in Remark 5.1.1, our IPD-SsN-AMG converges at least
linearly as long as the step size is bounded below αk ≥ α0 > 0. Practically,
we are not allowed to increase αk as large as we can. Hence, we choose αk ≥ 1

for small k(≤ 10) and set αk ∈ (0, 1) for large k. For ALM-SsN-PCG, there
are two crucial parameters σk and τk; see equation (18) in [72, Algorithm
1]. Theoretically, letting σk increase to ∞ and τk decrease to τ∞ > 0 implies
superlinear convergence. However, for the sake of practical computation,
we set the moderate choice: σk = O(k2) and τk = O(1/k). Additionally,
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we provide a warming-up initial guess for both two algorithms by running
Acc-ADMM 100 times.

IPD-SsN-AMG ALM-SsN-PCG Acc-ADMM

m = n itIPD itSsN
itamg

itALM itssn
itpcg

it residual
max aver max aver

1000 19 170 13 7 46 286 731 190 5000 6.42e-02

2000 29 233 14 7 54 416 1299 235 5000 1.05e-01

3000 29 279 15 7 57 463 2059 284 5000 3.18e-01

4000 39 311 13 6 61 531 2100 264 5000 4.95e-01

Table 5.3: Numerical results for optimal transport with random cost (5.38).

Numerical results with random cost (5.38) and quadratic distance cost
(5.39) are listed in Table 5.3 and Table 5.4, respectively. We record (i)
the number of iterations (itIPD and itALM), (ii) the total number of SsN
iterations (itSsN and itssn), and (iii) the maximum (max) and average
(aver) iteration number of AMG (itamg) and PCG (itpcg). Besides, Acc-
ADMM is stopped at k = 5000 and we report the corresponding relative
KKT residuals.

IPD-SsN-AMG ALM-SsN-PCG Acc-ADMM

m = n itIPD itSsN
itamg

itALM itssn
itpcg

it residual
max aver max aver

900 29 215 11 7 20 183 628 163 5000 1.03e-01

1600 29 225 11 7 21 226 979 191 5000 1.69e-01

2500 43 328 12 7 25 277 1556 278 5000 2.51e-01

3600 40 352 13 7 35 360 1798 640 5000 3.48e-01
Table 5.4: Numerical results for optimal transport with quadratic distance cost
(5.39).

We find that itIPD (itSsN) is better than itALM (itssn) for random
cost but slightly inferior for quadratic distance cost. Particularly, itamg is
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more robust than itpcg, and we also plot the growth behaviors in Figs. 5.3
and 5.4. As we can see, itamg stays around 10 while itpcg increases dra-
matically as k does.
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Figure 5.3: Growth behaviors of itamg and itpcg for optimal transport with ran-
dom cost: m = n = 3000 for the top row and m = n = 4000 for the bottom row.

Birkhoff projection

We then move to the Birkhoff projection (1.3) with possible entry con-
straint (1.4). For this problem, we choose fixed large step size αk = 10 for
our IPD-SsN-AMG. Numerical outputs with random data are presented in
Tables 5.5 and 5.6. Notice that both two algorithms work well, and itamg is
still superior than itpcg (which is also quite robust). This might be due to
the strongly convex property of the problem itself.
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Figure 5.4: Growth behaviors of itamg and itpcg for optimal transport with
quadratic distance cost: m = n = 2500 for the top row and m = n = 3600

for the bottom row.

IPD-SsN-AMG ALM-SsN-PCG Acc-ADMM

m = n itIPD itSsN
itamg

itALM itssn
itpcg

it residual
max aver max aver

2000 6 18 1 1 8 25 15 10 5000 3.33e-03

3000 6 17 1 1 7 24 14 10 5000 3.32e-03

4000 6 19 1 1 7 24 20 10 5000 3.23e-03

5000 6 19 1 1 7 24 26 10 5000 3.20e-03
Table 5.5: Numerical outputs for Birkhoff projection without entry constraint.
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IPD-SsN-AMG ALM-SsN-PCG Acc-ADMM

m = n itIPD itSsN
itamg

itALM itssn
itpcg

it residual
max aver max aver

1000 6 13 1 1 7 21 15 11 5000 3.81e-03

2000 6 20 1 1 8 24 15 10 5000 3.42e-03

3000 6 18 1 1 6 30 14 11 5000 3.30e-03

4000 6 17 1 1 5 42 20 12 5000 3.22e-03
Table 5.6: Numerical outputs for Birkhoff projection with entry constraint.

Partial optimal transport

Finally, let us consider the problem of partial optimal transport (1.6)
with random cost (5.38) and quadratic distance cost (5.39). Again, the
marginal distributions µ and ν and the fraction of mass a are generated
randomly.

From Tables 5.7 and 5.8, we observe that: (i) similar with the results of
optimal transport (see Tables 5.3 and 5.4), itIPD is much less than itALM
for random cost but slightly more than that for quadratic distance cost; (ii)
itSsN is better than itssn for both two cases; (iii) itamg stays robust and
outperforms itpcg.

Growth behaviors of itamg and itpcg are displayed in Figs. 5.5 and 5.6.
One finds that itamg is temperately increasing within few initial steps while
itpcg is not robust with respect to both the iteration process (i.e., the num-
ber k) and the problem size.
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IPD-SsN-AMG ALM-SsN-PCG Acc-ADMM

m = n itIPD itSsN
itamg

itALM itssn
itpcg

it residual
max aver max aver

1000 20 152 35 14 66 274 452 154 5000 1.55e-01

2000 34 205 25 8 72 352 644 145 5000 4.12e-01

3000 34 225 23 6 74 411 426 87 5000 8.71e-01

4000 33 238 29 6 81 462 555 100 5000 3.22e+01

Table 5.7: Numerical results for partial optimal transport with random cost (5.38).
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Figure 5.5: Growth behaviors of itamg and itpcg for partial optimal transport
with random cost: m = n = 3000 for top row and m = n = 4000 for bottom row.
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IPD-SsN-AMG ALM-SsN-PCG Acc-ADMM

m = n itIPD itSsN
itamg

itALM itssn
itpcg

it residual
max aver max aver

900 31 154 19 5 18 139 95 60 5000 5.95e-01

1600 32 155 28 5 22 176 98 63 5000 1.77e-01

2500 32 196 36 6 25 223 128 64 5000 6.20e-01

3600 31 204 46 7 29 244 138 66 5000 5.60e-01

Table 5.8: Numerical results for partial optimal transport with quadratic distance
cost (5.39).
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Figure 5.6: Growth behaviors of itamg and itpcg for partial optimal transport
with quadratic distance cost: m = n = 2500 for top row and m = n = 3600 for
bottom row.
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