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First order optimization methods based on Hessian-driven

Nesterov accelerated gradient flow ∗

Long Chen †, Hao Luo ‡.

Abstract

A novel dynamical inertial Newton system, which is called Hessian-driven Nesterov ac-
celerated gradient (H-NAG) flow is proposed. Convergence of the continuous trajectory are
established via tailored Lyapunov function, and new first-order accelerated optimization meth-
ods are proposed from ODE solvers. It is shown that (semi-)implicit schemes can always
achieve linear rate and explicit schemes have the optimal(accelerated) rates for convex and
strongly convex objectives. In particular, Nesterov’s optimal method is recovered from an ex-
plicit scheme for our H-NAG flow. Furthermore, accelerated splitting algorithms for composite
optimization problems are also developed.

1 Introduction

In this paper, we introduce the Hessian-based Nesterov accelerated gradient (H-NAG) flow:

γx′′ + (γ + µ)x′ + (1 + µβ + γβ′)∇f(x) + γβ∇2f(x)x′ = 0, (1)

where x = x(t) is a V -valued function of time variable t and (·)′ is the derivative taking respect
to t, f : V → R is a C2 and convex function defined on the Hilbert space V and the damping
coefficient γ(t) is dynamically changing by γ′ = µ− γ, µ > 0. The additional damping coefficient
β(t) in front of the Hessian is nonnegative. Note that (1) belongs to the class of dynamical inertial
Newton (DIN) system introduced recently in [5].

When choosing vanishing damping β = 0, (1) reduces to Nesterov accelerated gradient (NAG)
flow proposed in our recent work [13]

γx′′ + (γ + µ)x′ +∇f(x) = 0, (2)

or equivalently, the first-order ODE system





x′ = v − x,

γv′ = µ(x − v)−∇f(x),

γ′ = µ− γ.

(3)

In [13], the presented numerical discretizations with an extra gradient step for NAG flow (3) lead to
old and new accelerated schemes and can recover exactly Nesterov’s optimal method [15, Chapter
2] for both convex (µ = 0) and strongly convex cases (µ > 0) in a unified framework. When
applied to composite convex optimization, our methods can recover FISTA [11] for convex case
and give new accelerated proximal gradient methods for strongly convex case. Compared to recent
ODE models [20, 22, 23] for studying accelerated gradient methods which usually treat convex
and strongly convex cases separately, our unified analysis in [13] is due to the introduction of the
dynamic damping coefficient γ′ = µ− γ, which brings the effect of time rescaling.
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When β > 0, the added Hessian-driven damping in (1) will neutralize the possible transversal
oscillation occurred in the accelerated gradient method; see [5, Figure 1] for illustration. Particu-
larly, if β ≫ 1, then the flow behaves like the continuous Newton’s flow [4]. A direct discretization
based on Hessian is restrictive and expensive since requiring f ∈ C2 and the cost to compute the
Hessian matrix and its inverse.

Instead we will write (1) as a first order system





x′ = v − x− β∇f(x),

γv′ = µ(x − v)−∇f(x),

γ′ = µ− γ,

(4)

in which Hessian disappears. This agrees with the most remarkable feature of the dynamical
inertial Newton model discovered in [3]. Now (4) is well defined for f ∈ C1 and can be further
generalized to non-smooth setting by replacing gradient with sub-gradient [8].

1.1 Main results

We first consider smooth and µ-convex (µ > 0, cf. (9)) function f with L-Lipschitz gradient.
Let (x(t), v(t), γ(t)) be the solution of (4) and denote by x∗ a global minimum point of f . By
introducing the Lyapunov function

L(t) = f(x(t)) − f(x∗) +
γ(t)

2
‖v(t) − x∗‖2 , t > 0, (5)

we shall first establish the exponential decay property

L(t) +
∫ t

0

es−tβ(s) ‖∇f(x(s))‖2 ds 6 e−tL(0). (6)

Then we propose several implicit and explicit schemes for (4) to get a sequence of {(xk, vk, γk)}
and establish the convergence via the discrete analogue of (5)

Lk = f(xk)− f(x∗) +
γk
2

‖vk − x∗‖2 , k > 0.

For a semi-implicit scheme (proximal method), we shall prove

Lk + λk

k−1∑

i=0

α2
i

λiγi
‖∇f(xi+1)‖2 6 λkL0,

where the sequence {λk} is defined by that

λ0 = 1, λk =

k−1∏

i=0

1

1 + αi
, k > 1. (7)

We easily obtain the linear convergence rate as long as the time step size αk is bounded below,
Proximal method relies on a fast solver of a regularized problem which may not be available.

To be practical, we propose an explicit scheme (cf. (42)) for solving (4). This scheme has been
rewritten in the following algorithm style.
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Algorithm 1 HNAG method for minimizing f

Input: γ0 > 0 and x0, v0 ∈ V .
1: for k = 0, 1, . . . do

2: Compute αk, βk by αk =

√
γk
L
, βk =

1

Lαk
.

3: Update xk+1 =
1

1 + αk

[
xk + αkvk − αkβk∇f(xk)

]
.

4: Update vk+1 =
1

γk + µαk

[
γkvk + µαkxk+1 − αk∇f(xk+1)

]
.

5: Update γk+1 = (γk + µαk)/(1 + αk).
6: end for

We shall prove the convergence result for Algorithm 1:

Lk +
1

2L

k−1∑

i=0

λk

λi
‖∇f(xi)‖2 6 λkL0, (8)

where λk is introduce by (7) and has the estimate

λk 6 min

{
8L

(
2
√
2L+

√
γ0k

)−2

,
(
1 +

√
min{γ0, µ}/L

)−k
}
.

Note that the above rate of convergence is optimal in the sense of the optimization complexity
theory [14, 15]. Furthermore (8) promises faster convergence rate for the norm of the gradient; see
Remark 4.2.

In our recent work [13], we verified that NAG method can be recovered from an explicit scheme
for NAG flow (3) with an extra gradient descent step which is not a discretization of the ODE
(3). In this paper, we further show that NAG method is actually an explicit scheme for H-NAG
flow (4) without extra gradient step. From this point of view, our H-NAG model (4) offers better
explanation and understanding for Nesterov’s accelerated gradient method than NAG flow (3)
does.

We finally propose a new splitting method (cf. (65)) for composite convex optimization f =
h+g. Here, the objective f is µ-convex with µ > 0, h is a smooth convex function with L-Lipschitz
gradient and g is convex but non-smooth.

Algorithm 2 HNAG method for minimizing f = h+ g

Input: γ0 > 0 and x0, v0 ∈ V .
1: for k = 0, 1, . . . do

2: Compute αk, βk by αk =

√
γk
L
, βk =

1

Lαk
.

3: Set zk =
1

1 + αk

[
xk + αkvk − αkβk∇h(xk)

]
.

4: Update xk+1 = proxsg(zk) with s = αkβk/(1 + αk).

5: Set pk+1 =
1

βk

[
vk − xk+1 − βk∇h(xk)− (xk+1 − xk)/αk

]
∈ ∂g(xk+1).

6: Update vk+1 =
1

γk + µαk

[
γkvk + µαkxk+1 − αk∇h(xk+1)− αkpk+1

]
.

7: Update γk+1 = (γk + µαk)/(1 + αk).
8: end for

Observe that Algorithm 2 is almost identical to Algorithm 1 except we use proximal operator
for the non-smooth convex function g. For any λ > 0, the proximal operator proxλg is defined by
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that [10, 18]

proxλg(x) = inf
y∈V

(
g(y) +

1

2λ
‖x− y‖2

)
∀x ∈ V.

For Algorithm 2, the following accelerated convergence rate has been established

Lk 6 L0 ×min

{
8L

(
2
√
2L+

√
γ0k

)−2

,
(
1 +

√
min{γ0, µ}/L

)−k
}
,

and with an alternative choice for αk and βk, we can obtain faster convergence rate for the norm
of (sub-)gradient; see Remark 5.1.

1.2 Related work and main contribution

The most relevant works are [5, 19] where ODE models with Hessian driven damping are studied.
We defer to §1.4 for a detailed literature review.

We follow closely to [5, 19]. Namely we first analyze the ODE using a Lyapunov function, then
construct optimization algorithms from numerical discretizations of this ODE, and use a discrete
Lyapunov function to study the convergence of the proposed algorithms.

Our main contribution is a relatively simple ODE model with dynamic damping coefficient γ
which can handle both the convex case (µ = 0) and strongly convex case (µ > 0) in a unified way.
Our continuous and discrete Lyapunov functions are also relatively simple so that most calculation
is straightforward.

Another major contribution is a simplified Lyapunov analysis by introducing the strong Lya-
punov property cf. (27), which simplifies the heavy algebraic manipulation in [5, 19, 21, 22]. We
believe our translation of results from continuous-time ODE to discrete algorithms is more trans-
parent and helpful for the design and analysis of existing and new optimization methods. For
example, we successfully developed splitting algorithms for composite optimization problems not
restricted to a special case as considered in [5].

1.3 Function class

Throughout this paper, assume V is equipped with the inner product (·, ·) and the norm ‖·‖ =
(·, ·)1/2. We use 〈·, ·〉 to denote the duality pair between V ∗ and V , where V ∗ is the dual space of
V . Denote by F1

L the set of all convex functions f ∈ C1 with L-Lipschitz continuous gradient:

‖∇f(x)−∇f(y)‖∗ 6 L‖x− y‖ ∀x, y ∈ V,

where ‖·‖∗ denotes the dual norm on V ∗. We say that f is µ-convex if there exists µ > 0 such that

f(x)− f(y)− 〈p, x− y〉 > µ

2
‖x− y‖2 ∀ p ∈ ∂f(y), (9)

for all x, y ∈ V , where the sub-gradient ∂f(y) of f at y ∈ V is defined by that

∂f(y) := {p ∈ V ∗ : f(x) > f(y) + 〈p, x− y〉 ∀x ∈ V } . (10)

We use S0
µ to denote the set of all µ-convex functions. In addition, we set S1

µ := S0
µ ∩ C1 and

S1,1
µ,L := S1

µ ∩ F1
L.

1.4 Literature review

We first review some dynamical models involving Hessian data. In [3], combining the well-known
continuous Newton method [4] and the heavy ball system [17], Alvarez et al. proposed the so-called
dynamical inertial Newton (DIN) system

x′′ + αx′ + β∇2f(x)x′ +∇f(x) = 0, (11)
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where α, β > 0 are constants and f ∈ C2 is bounded from below. Note that the Hessian term
∇2f(x)x′ is nothing but the derivative of the gradient (∇f(x))′. Hence the DIN system (11) can
be transfered into a first-order system without Hessian

{
y′ = − (α− 1/β)x− y/β,

x′ = − (α− 1/β)x− y/β − β∇f(x).

For convex f , it has been proved [3, Theorem 5.1] that each trajectory of (11) weakly converges to
a minimizer of f . Later on, in [8], Attouch et al. extended the DIN system (11) to the composite
case f = h+ g:

x′′ + αx′ + β∇2h(x)x′ +∇h(x) +∇g(x) = 0,

where g ∈ C1 and f ∈ C2 is convex such that f = h+ g is convex. Like the DIN system (11), this
model can also be rewritten as a first-order system

{
x′ = − (α− 1/β)x− y/β − β∇h(x),

y′ = − (α− 1/β)x− y/β + β∇g(x),
(12)

based on which they generalized their model to nonsmooth case as well.
In [5] Attouch et al. added the Hessian term and time scaling to the ODE derived in [22] and

obtained
x′′ +

α

t
x′ + β∇2f(x)x′ + b∇f(x) = 0, t > t0, (13)

where α > 1 is a constant, f ∈ C2 is convex and β(t) is a nonnegative function such that

b(t) > β′(t) + β(t)/t, t > t0.

If b = 1, then (13) reduces to the ODE consider in [9]. When β(t) = 0, then (13) coincides with
the rescaled ODE derived in [2]. When α = 3, β(t) = β > 0 and b(t) = 1 + 1.5β/t, then (13)
recoveries the high resolution ODE (19). They derived the convergence result [5, Theorem 2.1]

t2w(t)(f(x(t)) − f(x∗)) +

∫ t

t0

s2β(s) ‖∇f(x(s))‖2 ds 6 C, (14)

provided that
w(t) = b(t)− β′(t)− β(t)/t, tw′(t) 6 (α− 3)w(t).

However, due to the above restriction on w, we have w(t) 6 Ctα−3 and the best decay rate they
can obtain is O(t1−α). In [5], they also studied a DIN system for f ∈ C2 ∩ S1

µ(µ > 0):

x′′ + 2
√
µx′ + β∇f2(x)x′ +∇f(x) = 0, (15)

where β > 0 is a constant. Note that the case β = 0 has been considered in [20, 23]. For β > 0,
they established the result

f(x(t))− f(x∗) + β2

∫ t

0

e
√
µ(s−t) ‖∇f(x(s))‖2 ds 6 Ce−t

√
µ/2. (16)

Recently, Shi et al. [19] derived two Hessian-driven models, which were called high-resolution
ODEs. One requires f ∈ C2 ∩ S1,1

µ,L with µ > 0 and reads as follows

x′′ + 2
√
µx′ +

√
β∇f2(x)x′ + (1 +

√
µβ)∇f(x) = 0, (17)

where 0 < β 6 1/L. This ODE interprets [15, Constant step scheme, III, Chapter 2] and achieves
the exponential decay [19, Theorem 1 and Lemma 3.1]

f(x(t)) − f(x∗) +
√
β

∫ t

0

e(s−t)
√
µ/4 ‖∇f(x(s))‖2 ds 6 Ce−t

√
µ/4. (18)

5



The second is for f ∈ C2 ∩ F1
L:

x′′ +
3

t
x′ +

√
β∇2f(x)x′ + (1 + t0/t)∇f(x) = 0, t > t0 = 1.5

√
β, (19)

where β > 0. This model agrees with (13) in a special case that α = 3, β(t) =
√
β and b(t) =

1 + 1.5
√
β/t, and the convergence result (14) in this case has also been proved by [19, Lemma 4.1

and Corollary 4.2]. Compared with the dynamical systems derived in [5, 19], our H-NAG flow (4)
uniformly treats f ∈ S1

µ with µ > 0 and yields the convergence result (6) which, also gives the
estimate for the gradient as what (14), (16) and (18) do.

Optimization methods based on differential equation solvers for those systems above are also
proposed. Based on a semi-implicit scheme for (12), Attouch et al. [6] proposed an inertial forward-
backward algorithm for composite convex optimization and established the weak convergence. In
[12], Castera et al. applied the DIN system (11) to deep neural networks and presented an inertial
Newton algorithm for minimizing the empirical risk loss function. Their numerical experiments
showed that the proposed method performs much better than SGD and Adam in the long run
and can reach very low training error. With minor change of (19), Shi et al. [19] developed
a family of accelerated methods by explicit discretization scheme. Later in [21] , for (17), they
considered explicit and symplectic methods, among which only the symplectic scheme achieves the
accelerated rate (20). More recently, Attouch et al. [5] proposed two explicit schemes for (13)
and (15), respectively. However, only the discretization for (13) has accelerated rate O(1/k2); see
[5, Theorem 3.3]. We emphasize that, our Algorithms 1 and 2 possess the convergence rate

O
(
min

{
1/k2,

(
1 +

√
µ/L

)−k
})

, (20)

which is optimal for f ∈ S1
µ(µ > 0) and accelerated for f ∈ S0

µ(µ > 0). More methods that achieve
the rate (20) are listed in Sections 4.2, 4.3 and 5.2.

The rest of this paper is organized as follows. In Section 2 we focus on the continuous problem
(4). Then, in Sections 3 and 4 we consider (semi-)implicit and explicit schemes sequentially. Then,
we deal with the composite case f = h + g in Section 5. Finally, we give conclusion and future
work in Section 6.

2 Continuous Problem

In this section, we study our H-NAG flow for f ∈ S1
µ(µ > 0) and establish the minimizing property

of the trajectory.

2.1 Notation

To move on and for later use, throughout this paper, we define the Lyapunov function L : V → R>0

by that

L(x) = L(x, v, γ) := f(x)− f(x∗) +
γ

2
‖v − x∗‖2 . (21)

where x = (x, v, γ) ∈ V × V × R+ := V , and x∗ is a global minimum point of f . When
x(t) = (x(t), v(t), γ(t)) is a V -valued function of time variable t on [0,∞), we also introduce the
abbreviated notation

L(t) := L
(
x(t)

)
= L

(
x(t), v(t), γ(t)

)
, t > 0. (22)

Note that L is convex with respect to (x, v) and linear in γ. Moreover, L is whenever smooth in
respect of (v, γ) and it is trivial that

∇xL = ∇f(x),

∇vL = γ(v − x∗),

∇γL =
1

2
‖v − x∗‖2 .
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Above, ∇× means the partial derivative of × = x, v or γ. For any β ∈ R+ and x = (x, v, γ) ∈ V ,
we introduce the flow field G

G(x, β) :=
(
Gx(x, β), Gv(x), Gγ(x)

)
, (23)

where the three components are defined as follows

Gx(x, β) = v − x− β∇f(x),

Gv(x) =
µ

γ
(x − v)− 1

γ
∇f(x),

Gγ(x) = µ− γ.

Our H-NAG system (4) can be simply written as

x
′(t) = G(x(t), β(t)), (24)

where x(t) = (x(t), v(t), γ(t)). We find that x∗ = (x∗, x∗, µ) is a candidate of the equilibrium point
to the dynamic system (24).

The well-posedness of (24) is standard. Indeed, if f has Lipschitz continuous gradient, then
apply the classical existence and uniqueness results of ODE (see [1, Theorem 4.1.4]) yields that
the ODE system (24) admits a unique solution x = (x, v, γ) with x ∈ C2([0,∞);V ) and v ∈
C1([0,∞);V ).

2.2 Strong Lyapunov property

Originally the Lyapunov function is used to study the stability of an equilibrium point of a dy-
namical system. The function L(x) defined by (21) is called a Lyapunov function of the vector
field G(x, β) (23) near an equilibrium point x∗ if L(x∗) = 0 and

−∇L(x) · G(x, β) is locally positive near x∗. (25)

To obtain the convergence rate, we need a stronger condition than merely −∇L(x) · G(x, β)
is locally positive definite. We introduce the strong Lyapunov property: there exist a positive
function c(x) > 0, and a function q(x) : V → R such that

−∇L(x) · G(x, β) > c(x)L(x) + q2(x) ∀x ∈ V . (26)

Next we will show the Lyapunov function (21) satisfies the strong Lyapunov property.

Lemma 2.1. Assume f ∈ S1
µ(µ > 0). For any β ∈ R+ and x = (x, v, γ) ∈ V, we have

−∇L(x) · G(x, β) > L(x) + β‖∇f(x)‖2 + µ

2
‖x− v‖2 . (27)

Proof. Indeed, observing the identity

2 〈x− v, v − x∗〉 = ‖x− x∗‖2 − ‖x− v‖2 − ‖v − x∗‖2 ,

and using the convexity of f

〈∇f(x), x − x∗〉 > f(x)− f(x∗) +
µ

2
‖x− x∗‖2 ,

a direct computation gives

−∇L(x) · G(x, β) = − µ 〈x− v, v − x∗〉+ 〈∇f(x), x − x∗〉

+ β ‖∇f(x)‖2 + γ − µ

2
‖v − x∗‖2

> L(x) + β ‖∇f(x)‖2 + µ

2
‖x− v‖2 .

This finishes the proof of this lemma. �
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When f is nonsmooth, we introduce the notation ∂L(x, p) =
(
p,∇vL(x),∇γL(x)

)
and G(x, β, p)

by replacing ∇f(x) in G with some p ∈ ∂f(x). Namely we substitute ∇f(x) in ∇xL and G with
some p ∈ ∂f(x), where the sub-gradients ∂f(x) of f is defined in (10). Then we can easily generalize
Lemma 2.1 to the non-smooth version.

Lemma 2.2. Assume f ∈ S0
µ(µ > 0). Then for any β ∈ R+, x = (x, v, γ) ∈ V and p ∈ ∂f(x), we

have
− ∂L(x, p) · G(x, β, p) > L(x) + β‖p‖2 + µ

2
‖x− v‖2 . (28)

2.3 Minimizing property

The crucial inequality (27) implies that G is a descent direction for minimizing L and thus L and
‖∇f‖ decrease along the trajectory defined by (24). Indeed, we have the following theorem that
depicts this.

Theorem 2.1. Let x(t) = (x(t), v(t), γ(t)) be the solution of (24), then for any t > 0,

L(t) +
∫ t

0

es−tβ(s) ‖∇f(x(s))‖2 ds 6 e−tL(0). (29)

Proof. By the chain rule L′(t) = ∇L(x(t)) · G(x(t), β(t)) and the key estimate (27), we have the
inequality

L′(t) 6 −L(t)− β(t) ‖∇f(x(t))‖2 − µ

2
‖x(t) − v(t)‖2 6 −L(t).

This yields the exponential decay rate L(t) 6 e−tL(0). Moreover, we find that

L′(t) + L(t) + β(t) ‖∇f(x(t))‖2 6 0.

Multiplying both sides by et and integrating over (0, t) gives

∫ t

0

d (esL(s)) +
∫ t

0

esβ(s) ‖∇f(x(s))‖2 ds 6 0,

which also implies

etL(t) +
∫ t

0

esβ(s) ‖∇f(x(s))‖2 ds 6 L(0), t > 0.

This proves (29) and establishes the proof of this theorem. �

Remark 2.1. We do not have to give the explicit form of β(t), which is acceptable as long as
it is positive, i.e., β(t) > 0 for all t > 0. In the discretization level, however, to obtain optimal
rate of convergence, we shall choose special coefficient βk, which is positive and computable (cf.
Theorem 3.1 and Theorem 4.1).

Remark 2.2. As discussed in [13, section 2.2], the exponential decay (29) may be sped or slowed
down if we introduce the time rescaling. In our model (4), such rescaling is automatically encoded
in the damping parameter γ governed by the equation γ′ = µ− γ which allow us to handle µ > 0
and µ = 0 in a unified way.

3 A Semi-implicit Scheme

In this section, we consider a semi-implicit scheme for our H-NAG flow (4), where f ∈ S1
µ with

µ > 0. We will see that in the discrete level, rescaling effect and exponential decay can be inherit
by (semi-)implicit scheme which has no restriction on step size; see Theorem 3.1, [2, Theorem 3.1]
and [13, Theorem 1].
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Our scheme reads as follows




xk+1 − xk

αk
= vk − xk+1 − βk∇f(xk+1),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
∇f(xk+1),

γk+1 − γk
αk

= µ− γk+1.

(30)

If we set

yk :=
xk + αkvk
1 + αk

, sk :=
αkβk

1 + αk
,

then the update for xk+1 is equivalent to

xk+1 = yk − sk∇f(xk+1) = proxskf (yk).

After obtaining xk+1, vk+1 is obtained through the second equation of (30).
To characterize the convergence rate, denote by

λ0 = 1, λk =

k−1∏

i=0

1

1 + αi
, k > 1. (31)

We introduce the discrete Lyapunov function

Lk := L(xk) = f(xk)− f(x∗) +
γk
2

‖vk − x∗‖2 , (32)

where xk = (xk, vk, γk), and

R0 = 0, Rk :=
λk

2

k−1∑

i=0

αiβi

λi
‖∇f(xi+1)‖2 , k > 1. (33)

Furthermore, for all k > 0, we set
Ek = Lk +Rk. (34)

In the following, we present the convergence result for our semi-implicit scheme (30).

Theorem 3.1. Assume βk satisfies βkγk = αk, then for the semi-implicit scheme (30) with any
step size αk > 0, we have

Ek+1 6
Ek

1 + αk
∀ k > 0. (35)

Consequently, for all k > 0, it holds that

Lk +
λk

2

k−1∑

i=0

α2
i

λiγi
‖∇f(xi+1)‖2 6 λkL0. (36)

Proof. We first split the difference as

Lk+1 − Lk = L(xk+1, vk, γk)− L(xk, vk, γk)

+ L(xk+1, vk+1, γk)− L(xk+1, vk, γk)

+ L(xk+1, vk+1, γk+1)− L(xk+1, vk+1, γk)

:= I1 + I2 + I3.

The last item I3 is the easiest one as L is linear in γ

I3 = 〈∇γL(xk+1), γk+1 − γk〉 = αk(∇γL(xk+1),Gγ(xk+1)). (37)

9



For item I2, we use the fact L(xk+1, ·, γk) is γk-convex and the discretization (30) to get

I2 6 〈∇vL(xk+1, vk+1, γk), vk+1 − vk〉 −
γk
2

‖vk+1 − vk‖2

= αk 〈∇vL(xk+1),Gv(xk+1)〉 −
γk
2

‖vk+1 − vk‖2 . (38)

In the last step, as γk is canceled in the product, we can switch the argument γk to γk+1. By the
convexity of f , it is clear that

I1 = f(xk+1)− f(xk) 6 〈∇f(xk+1), xk+1 − xk〉
= αk 〈∇xL(xk+1),Gx(xk+1, βk)〉+ αk 〈∇f(xk+1), vk − vk+1〉 .

Observing the negative term in (38), we bound the second term as follows

αk‖∇f(xk+1)‖‖vk − vk+1‖ 6
α2
k

2γk
‖∇f(xk+1)‖2 +

γk
2
‖vk − vk+1‖2.

Now, adding all together and using the strong Lyapunov property (27), we get

Lk+1 − Lk 6 αk

(
∇L(xk+1),G(xk+1, βk)

)
+

α2
k

2γk
‖∇f(xk+1)‖2

6 − αkLk+1 +

(
α2
k

2γk
− αkβk

)
‖∇f(xk+1)‖2

= − αkLk+1 −
αkβk

2
‖∇f(xk+1)‖2. (39)

Finally, by definition λk+1 − λk = −αkλk+1, it is evident that

2Rk+1 − 2Rk = λk+1

k∑

i=0

αiβi

λi
‖∇f(xi+1)‖2 − λk

k−1∑

i=0

αiβi

λi
‖∇f(xi+1)‖2

= αkβk ‖∇f(xk+1)‖2 + (λk+1 − λk)
k∑

i=0

αiβi

λi
‖∇f(xi+1)‖2

= αkβk ‖∇f(xk+1)‖2 − αk2Rk+1. (40)

Now combining the relation βkγk = αk with (39) and (40) implies (35) and thus concludes the
proof of this theorem. �

With carefully designed parameter βk = αk/γk, the semi-implicit scheme (30) can always
achieve linear convergence rate as long as the step size αk is chosen uniformly bounded below
αk > α̂ > 0 for all k > 0 and larger αk yields faster convergence rate. Observing the update of
γk+1, we conclude that, if γ0 > µ, then γk > γk+1 > µ, and if 0 < γ0 < µ, then γk < γk+1 < µ.
Hence, it follows that

min{γ0, µ} 6 γk 6 max{γ0, µ}, (41)

and from (36) we can get fast convergence for the norm of the gradient.

Remark 3.1. If f is nonsmooth, we use the proximal operator proxskf
to rewrite the implicit

scheme (30) as follows




xk+1 = proxskf
(yk), yk =

xk + αkvk
1 + αk

, sk =
αkβk

1 + αk
,

pk+1 =
1

βk

(
vk − xk+1 −

xk+1 − xk

αk

)
,

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
pk+1,

γk+1 − γk
αk

= µ− γk+1.

10



Note that pk+1 ∈ ∂f(xk+1). We just simply replace ∇f(xk+1) by pk+1. In addition, thanks to
Lemma 2.2, proceeding as the proof of Theorem 3.1, we can derive

Lk +
λk

2

k−1∑

i=0

αiβi

λi
‖pi+1‖2 6 λkL0.

4 Explicit Schemes with Optimal Rates

This section assumes f ∈ S1,1
µ,L with µ > 0 and considers several explicit schemes including Algo-

rithm 1. All of those methods have optimal convergence rates in the sense of Nesterov [15, Chapter
2].

4.1 Analysis of Algorithm 1

It is straightforward to verify that the Algorithm 1 is equivalent to the following explicit scheme




xk+1 − xk

αk
= vk − xk+1 − βk∇f(xk),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
∇f(xk+1),

γk+1 − γk
αk

= µ− γk+1,

(42)

where

αk =

√
γk
L
, βk =

1

Lαk
. (43)

Given (xk, vk, γk), we can solve the first equation to get xk+1 and with known xk+1, we can get
vk+1 from the second equation. Moreover, the sequence {vk} can be further eliminated to get an
equation of (xk+1, xk, xk−1)

γk ·
xk+1−xk

αk

− xk−xk−1

αk−1

αk
+ (µ+ γk) ·

xk+1 − xk

αk

+ γkβk ·
∇f(xk)−∇f(xk−1)

αk
+ (1 + µβk)∇f(xk)

+ γk ·
βk − βk−1

αk
· ∇f(xk−1) = 0,

which is an explicit scheme for (1) since the unknown xk+1 is not in the gradient. Note that
Hessian term ∇2f is not present as the action ∇2f(x)x′ can be discretized by the quotient of the
gradient.

For the convergence analysis, we need the following tighter bound on the function difference;
see [15, Theorem 2.1.5].

Lemma 4.1 ([15]). If f ∈ F1
L, then

f(y)− f(x) 6 〈∇f(y), y − x〉 − 1

2L
‖∇f(y)−∇f(x)‖2 ∀x, y ∈ V.

For the explicit scheme, we modify the definition (33) of Rk slightly as

R0 = 0, Rk :=
λk

2

k−1∑

i=0

αiβi

λi
‖∇f(xi)‖2 , k > 1,

and we also set Ek := Lk +Rk, where λk and Lk are defined in (31) and (32), respectively. Similar
to the derivation of (40), we have

Rk+1 −Rk = − αkRk+1 +
αkβk

2
‖∇f(xk)‖2 . (44)
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Theorem 4.1. For Algorithm 1, we have

Ek+1 6
Ek

1 + αk
∀ k > 0. (45)

Consequently, for all k > 0, it holds that

Lk +
1

2L

k−1∑

i=0

λk

λi
‖∇f(xi)‖2 6 λkL0. (46)

Above, λk is bounded above by the optimal convergence rate

λk 6 min

{
8L

(
2
√
2L+

√
γ0k

)−2

,
(
1 +

√
min{γ0, µ}/L

)−k
}
. (47)

Proof. Following the proof of Theorem 3.1, we first split the difference Lk+1 − Lk along the path
xk = (xk, vk, γk) to (xk+1, vk, γk) to (xk+1, vk+1, γk) and finally to xk+1 = (xk+1, vk+1, γk+1):

Lk+1 − Lk = L(xk+1, vk, γk)− L(xk, vk, γk)

+ L(xk+1, vk+1, γk)− L(xk+1, vk, γk)

+ L(xk+1, vk+1, γk+1)− L(xk+1, vk+1, γk)

:= I1 + I2 + I3.

Note that we still have (37) and (38):

I3 = αk(∇γL(xk+1),Gγ(xk+1)),

I2 6 αk 〈∇vL(xk+1),Gv(xk+1)〉 −
γk
2

‖vk+1 − vk‖2 . (48)

We now use Lemma 4.1 to estimate I1

I1 6 〈∇xL(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2 .

In the first step, we can switch (xk+1, vk, γk) to xk+1 because ∇xL is independent of (v, γ). Then
we use the discretization (42) to replace xk+1 − xk and compare with the flow evaluated at xk+1:

〈∇xL(xk+1), xk+1 − xk〉 = αk 〈∇xL(xk+1),Gx(xk+1, βk)〉
+ αkβk(∇f(xk+1),∇f(xk+1)−∇f(xk))

+ αk 〈∇f(xk+1), vk − vk+1〉 .

Observing the bound (48) for I2, we use Cauchy–Schwarz inequality to bound the last term as
follows

αk‖∇f(xk+1)‖‖vk − vk+1‖ 6
α2
k

2γk
‖∇f(xk+1)‖2 +

γk
2
‖vk − vk+1‖2. (49)

We use the identity for the second term

αkβk(∇f(xk+1),∇f(xk+1)−∇f(xk))

=− αkβk

2
‖∇f(xk)‖2 +

αkβk

2
‖∇f(xk+1)‖2 +

αkβk

2
‖∇f(xk+1)−∇f(xk)‖2.

Adding all together and applying Lemma 2.1 yield that

Lk+1 − Lk 6 − αkLk+1 −
αkβk

2
‖∇f(xk)‖2

+
1

2

(
αkβk −

1

L

)
‖∇f(xk+1)−∇f(xk)‖2

+
1

2

(
α2
k

γk
− αkβk

)
‖∇f(xk+1)‖2 .

(50)
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Additionally, in view of the choice of parameters αk and βk (cf. (43)), we have

αkβk −
1

L
= 0,

α2
k

γk
− αkβk = 0,

which implies

Lk+1 − Lk 6 − αkLk+1 −
αkβk

2
‖∇f(xk)‖2 .

This together (43) and (44) gives the desired estimates (45) and (46).
Next, let us study the asymptotic behavior of λk. The formula of γk yields

1

1 + αk
=

γk+1

γk + µαk
6

γk+1

γk
,

and it follows from (31) that

λk 6
γk
γ0

=
Lα2

k

γ0
. (51)

Using the lower bound of αk implied by (51), we get

1√
λk+1

− 1√
λk

>
λk − λk+1

2λk

√
λk+1

=
αk

2
√
λk(1 + αk)

>
1

2

√
γ0
2L

,

which implies
1√
λk

>
k

2

√
γ0
2L

+ 1.

Therefore, we have

λk 6 8L
(
2
√
2L+

√
γ0k

)−2

. (52)

Note that this sublinear rate holds for µ > 0. If µ > 0, then by (41) it is evident that

α2
k =

γk
L

>
1

L
min{γ0, µ}, (53)

so we have that

λk 6

(
1 +

√
min{γ0, µ}/L

)−k

.

This together with (52) implies (47) and concludes the proof. �

Remark 4.1. As we see, unlike the semi-implicit scheme (30), explicit scheme (42) has restriction
on step size αk. When µ > 0, namely f is strongly convex, it is allowed to choose non-vanishing
step size (cf. (53)) which promises (accelerated) linear rate. For convex f , i.e., µ = 0, (51)
becomes equality which gives vanishing step size αk = O(1/k) and results in accelerated sublinear
rate O(1/k2).

Remark 4.2. Note that (46) gives the optimal convergence rate under an oracle model of opti-
mization complexity [15]. However, the explicit schemes proposed in [5, 21] for strongly convex
case (µ > 0) haven’t achieved acceleration. In addition, we also have faster rate for the norm of
gradient. Indeed, by (46), we have

∞∑

i=0

1

λi
‖∇f(xi)‖2 6 2LL0.

This yields that

min
06i6k

‖∇f(xi)‖2 6
2LL0∑k
i=0 1/λi

,

and asymptotically, we have ‖∇f(xk)‖2 = o(2LL0λk). On the other hand, thanks to the Lemma 4.1,
we have the bound

1

2L
‖∇f(xk)‖2 6 f(xk)− f(x∗) 6 Lk,

which yields the uniform estimate

‖∇f(xk)‖2 6 2LL0λk. (54)
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4.2 HNAG method with one extra gradient step

Based on (42), we propose an explicit scheme with one extra gradient step:




yk − xk

αk
= vk − yk − βk∇f(xk),

vk+1 − vk
αk

=
µ

γk
(yk − vk+1)−

1

γk
∇f(yk),

γk+1 − γk
αk

= µ− γk+1,

xk+1 = yk −
1

L
∇f(yk),

(55)

where αk and βk are chosen from the relation

Lα2
k = γk(2 + αk), βk =

1

Lαk
. (56)

Below, we present this scheme in the algorithm style.

Algorithm 3 HNAG Method with extra gradient step

Input: γ0 > 0 and x0, v0 ∈ V .
1: for k = 0, 1, . . . do

2: Compute αk, βk by Lα2
k = γk(2 + αk), βk =

1

Lαk
.

3: Set yk =
1

1 + αk

[
xk + αkvk − αkβk∇f(xk)

]
.

4: Update vk+1 =
1

γk + µαk

[
γkvk + µαkyk − αk∇f(yk)

]
.

5: Update xk+1 = yk −
1

L
∇f(yk).

6: Update γk+1 = (γk + µαk)/(1 + αk).
7: end for

Define
L̂k := f(yk)− f(x∗) +

γk+1

2
‖vk+1 − x∗‖2 .

Proceeding as the proof of Theorem 4.1, we still have (50), i.e.,

L̂k − Lk 6 − αkL̂k −
αkβk

2
‖∇f(xk)‖2

+
1

2

(
αkβk −

1

L

)
‖∇f(yk)−∇f(xk)‖2

+
1

2

(
α2
k

γk
− αkβk

)
‖∇f(yk)‖2 .

We then use our choice of parameters (56) to obtain

L̂k − Lk 6 −αkL̂k +
1 + αk

2L
‖∇f(yk)‖2 −

1

2L
‖∇f(xk)‖2, (57)

Recalling the standard gradient descent result (cf. [15, Lemma 1.2.3])

f(y −∇f(y)/L)− f(y) 6 − 1

2L
‖∇f(y)‖2 ∀ y ∈ V,

we get the inequality

Lk+1 − L̂k = f(xk+1)− f(yk) = f(yk −∇f(yk)/L)− f(yk) 6 − 1

2L
‖∇f(yk)‖2 .
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By (57), it follows that

Lk+1 − Lk 6 −αkLk+1 −
1

2L
‖∇f(xk)‖2. (58)

Hence, using the same notation as that in Theorem 4.1, we have the following result.

Theorem 4.2. For Algorithm 3, we have

Ek+1 6
Ek

1 + αk
∀ k > 0. (59)

Hence, for all k > 0, it holds that

Lk +
1

2L

k−1∑

i=0

λk

λi
‖∇f(xi)‖2 6 λkL0, (60)

where λk is defined by (31) and still has the optimal upper bound

λk 6 min

{
4L

(
2
√
L+

√
1.5γ0 k

)−2

,
(
1 +

√
2min{γ0, µ}/L

)−k
}
. (61)

Proof. Note that (59) and (60) have been derived from (44) and (58). The estimate (61) for λk

follows from the procedure in Theorem 4.1 so we omit it here. �

Remark 4.3. Note that the optimal convergence rate (61) is slightly better than (47) due to an extra
gradient step in Algorithm 3. However, two gradient ∇f(xk) and ∇f(yk) should be computed in
one iteration. In Algorithm 1, although there are still two gradient ∇f(xk) and ∇f(xk+1), the later
one can be re-used in the next iteration and thus essentially only one gradient is computed in one
iteration. In most applications, evaluation of gradient is the dominant cost and thus Algorithm 1
is still more efficient than Algorithm 3.

4.3 Equivalence to methods from NAG flow

In this section, we shall show some explicit schemes that are supplemented with one gradient
descent steps for NAG flow (3) can be viewed as explicit discretizations for H-NAG flow (4).

Recall that, in [13], we present two explicit schemes for NAG flow (3). The first one reads as
follows 




yk − xk

αk
= vk − yk,

vk+1 − vk
αk

=
µ

γk
(yk − vk+1)−

1

γk
∇f(yk),

xk+1 = yk −
1

L
∇f(yk),

γk+1 = γk + αk(µ− γk+1).

(62)

Let us represent xk from the first equation

xk = yk + αk(yk − vk),

and put this into the third equation to obtain

yk+1 + αk+1(yk+1 − vk+1) = yk −
1

L
∇f(yk).

Now reorganizing (62) yield that





vk+1 − vk
αk

=
µ

γk
(yk − vk+1)−

1

γk
∇f(yk),

yk+1 − yk
αk+1

= vk+1 − yk+1 − βk+1∇f(yk),
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where βk+1 = 1/(Lαk+1). This is nothing but an explicit scheme for (4). In addition, writing the
previous iteration for yk before vk+1 and replacing yk with xk+1 yield





xk+1 − xk

αk
= vk − xk+1 − βk∇f(xk),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
∇f(xk+1),

which is identical to the scheme (42) but with slightly different choice of parameters. If Lα2
k =

γk(1 + αk), then by [13, Theorem 2], we have the optimal convergence rate

Lk 6 L0 ×min

{
4L

(
2
√
L+

√
γ0 k

)−2
,
(
1 +

√
min{γ0, µ}/L

)−k
}
,

where Lk is defined by (32).
The second scheme is listed below





yk − xk

αk
=

γk
γk+1

(vk − yk),

vk+1 − vk
αk

=
µ

γk+1
(yk − vk)−

1

γk+1
∇f(yk),

xk+1 = yk −
1

L
∇f(yk),

γk+1 = γk + αk(µ− γk),

(63)

which recoveries Nesterov’s optimal method [15, Chapter 2] constructed by estimate sequence.
Proceeding as before, we can eliminate {xk} and rearrange (63) by that





vk+1 − vk
αk

=
µ

γk+1
(yk − vk)−

1

γk+1
∇f(yk),

yk+1 − yk
αk+1

=
γk+1

γk+2
(vk+1 − yk+1)− βk+1∇f(yk),

γk+1 = γk + αk(µ− γk),

where βk+1 = 1/(Lαk+1). This is also an explicit scheme for our H-NAG flow (4). If Lα2
k = γk+1,

then by [13, Theorem 3], we have the optimal convergence rate

Lk 6 L0 ×min

{
4L

(
2
√
L+

√
γ0 k

)−2
,
(
1−

√
min{γ0, µ}/L

)k
}
,

which indicates the decay of the norm of gradient, i.e.,

‖∇f(xk)‖2 6 2LL0 ×min

{
4L

(
2
√
L+

√
γ0 k

)−2
,
(
1−

√
min{γ0, µ}/L

)k
}
. (64)

We conclude that H-NAG flow offers us a better explanation and understanding for Nesterov’s
optimal method [15, Chapter 2] than NAG flow (3) does and in view of Remark 4.2 and (64),
algorithms based on H-NAG yields faster decay for the norm of the gradient.

5 Splitting Schemes with Accelerated Rates

In this section, we consider the composite case f = h + g and assume that f ∈ S0
µ with µ > 0,

h ∈ F1
L is the smooth part and the nonsmooth part g is convex and lower semicontinuous. Note

that this assumption on f is more general than that in [13, 16, 20]. To utilize the composite
structure of f , we shall consider splitting schemes that are explicit in h and implicit in g and prove
the accelerated convergence rates.
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5.1 Analysis of Algorithm 2

It is easy to show Algorithm 2 can be written as a splitting scheme





xk+1 − xk

αk
∈ vk − xk+1 − βk∇h(xk)− βk∂g(xk+1),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
(∇h(xk+1) + pk+1) ,

γk+1 − γk
αk

= µ− γk+1,

(65)

where αk and βk are chosen from (43), i.e.,

αk =

√
γk
L
, βk =

1

Lαk
, (66)

and the term pk+1 is defined as follows

pk+1 :=
1

βk

(
vk − xk+1 − βk∇h(xk)−

xk+1 − xk

αk

)
∈ ∂g(xk+1).

If we introduce

yk :=
xk + αkvk
1 + αk

, sk :=
αkβk

1 + αk
, zk := yk − sk∇h(xk),

then the update of xk+1 in (65) is equivalent to

xk+1 = argmin
y∈V

(
h(xk) + 〈∇h(xk), y − xk〉+ g(y) +

1

2sk
‖y − yk‖2

)

= proxskg(yk − sk∇h(xk)).

Theorem 5.1. For Algorithm 2, we have

Lk+1 6
Lk

1 + αk
∀ k > 0, (67)

where Lk is defined in (32), and it holds that

Lk 6 L0 ×min

{
8L

(
2
√
2L+

√
γ0k

)−2

,
(
1 +

√
min{γ0, µ}/L

)−k
}
. (68)

Proof. Based on the equivalent form (65), the proof is almost identical to a combination of that of
Theorem 3.1 and Theorem 4.1. Let us start from the difference

Lk+1 − Lk = L(xk+1, vk, γk)− L(xk, vk, γk)

+ L(xk+1, vk+1, γk)− L(xk+1, vk, γk)

+ L(xk+1, vk+1, γk+1)− L(xk+1, vk+1, γk)

:= I1 + I2 + I3,

where the estimates for I2 and I3 keep unchanged

I3 = αk(∇γL(xk+1),Gγ(xk+1)),

I2 6 αk 〈∇vL(xk+1),Gv(xk+1)〉 −
γk
2

‖vk+1 − vk‖2 .

Observing that

I1 = L(xk+1, vk, γk)− L(xk, vk, γk) = g(xk+1)− g(xk) + h(xk+1)− h(xk),
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we use Lemma 4.1 and the fact pk+1 ∈ ∂g(xk+1) to estimate I1

I1 6 〈∇h(xk+1) + pk+1, xk+1 − xk〉 −
1

2L
‖∇h(xk+1)−∇h(xk)‖2 . (69)

For simplicity, set qk+1 = pk+1 +∇h(xk+1) ∈ ∂f(xk+1). We use the discretization (65) to replace
xk+1 − xk and compare with the flow evaluated at xk+1 = (xk+1, vk+1, γk+1):

〈qk+1, xk+1 − xk〉 = αk 〈qk+1,Gx(xk+1, βk)〉
+ αkβk 〈qk+1,∇h(xk+1)−∇h(xk)〉
+ αk 〈qk+1, vk − vk+1〉 .

The last term is estimated in the same way as (49), namely,

αk‖qk+1‖‖vk − vk+1‖ 6
α2
k

2γk
‖qk+1‖2 +

γk
2
‖vk − vk+1‖2.

Thanks to the negative term in (69), we bound the second term by that

αkβk 〈qk+1,∇h(xk+1)−∇h(xk)〉 6
1

2L
‖∇h(xk+1)−∇h(xk)‖2 +

Lα2
kβ

2
k

2
‖qk+1‖2 .

We now get the estimate for I1 as follows

I1 6 αk 〈qk+1,Gx(xk+1, βk)〉+
γk
2
‖vk − vk+1‖2 +

(
Lα2

kβ
2
k

2
+

α2
k

2γk

)
‖qk+1‖2 .

Putting all together and using Lemma 2.2 implies

Lk+1 − Lk 6 αk(∂L(xk+1, qk+1),G(xk+1, βk, qk+1))

+

(
Lα2

kβ
2
k

2
+

α2
k

2γk

)
‖qk+1‖2

6 − αkLk+1 +

(
Lα2

kβ
2
k

2
+

α2
k

2γk
− αkβk

)
‖qk+1‖2

= − αkLk+1,

(70)

where in the last step we used the fact (66). This establishes (67) and yields that Lk 6 λkL0.
Note the bound (47) for λk still holds here and (68) follows directly. We finally conclude the proof
of this theorem. �

Remark 5.1. To control the sub-gradient, we can choose

αk =

√
γk
4L

, βk =
1

2Lαk
.

Plugging this into (70) indicates

Lk+1 − Lk 6 −αkLk+1 −
αkβk

2
‖qk+1‖2 . (71)

By slight modification of the proof, it follows that

Lk +
1

4L

k−1∑

i=0

λk

λi
‖qi+1‖2 6 λkL0. (72)

Following the estimate for λk in Theorem 4.1, we can derive that

λk 6 min

{
32L

(
4
√
2L+

√
γ0k

)−2

,
(
1 + 0.5

√
min{γ0, µ}/L

)−k
}
.

Therefore, (72) yields fast convergence for the norm of (sub-)gradient. However, the convergence
bound is slightly worse than that of (68).
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5.2 Methods using gradient mapping

In [13], using the gradient mapping technique [16], we presented two explicit schemes (supplemented
with one gradient descent step) for NAG flow (3) in composite case f = h + g, where h ∈ S1,1

µ,L

with µ > 0, g is convex and lower-semicontinuous. Following the discussion in §4.3, we show that
those two schemes can also be viewed as explicit discretizations for H-NAG flow (4).

Since the argument of those two methods are analogous, we only consider the following algo-
rithm [13, Algorithm 2]





yk − xk

αk
= vk − yk,

vk+1 − vk
αk

=
µ

γk
(yk − vk+1)−

1

γk
∇̂f(yk),

xk+1 = yk −
1

L
∇̂f(yk),

γk+1 = γk + αk(µ− γk+1).

(73)

Above, the gradient mapping ∇̂f(yk) is defined as follows

∇̂f(yk) := L
(
yk − proxsg

[
yk −∇h(yk)/L

])

∈ ∇h(yk) + ∂g
(
proxg/L

[
yk −∇h(yk)/L

])
.

(74)

If Lα2
k = γk(1 + αk), then by [13, Theorem 4], we have the accelerated convergence rate

Lk 6 L0 ×min

{
4L

(
2
√
L+

√
γ0 k

)−2
,
(
1 +

√
min{γ0, µ}/L

)−k
}
,

where Lk is defined in (32). With a similar simplify process as that in Section 4.3, we can eliminate
the sequence {xk} and obtain the following equivalent form of (73):





vk+1 − vk
αk

=
µ

γk
(yk − vk+1)−

1

γk
∇̂f(yk),

yk+1 − yk
αk+1

= vk+1 − yk+1 − βk+1∇̂f(yk),

where βk+1 = 1/(Lαk+1). This is indeed an explicit scheme for H-NAG flow (4). Writing the
previous iteration for yk before vk+1 and replacing yk with xk+1 yield





xk+1 − xk

αk
= vk − xk+1 − βk∇̂f(xk),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
∇̂f(xk),

which is almost identical to (65). The difference is that the gradient mapping uses

∇̂f(xk) = ∇h(xk) + ∂g(x̂k),

where x̂k = proxg/L

[
xk −∇h(xk)/L

]
, while the scheme (65) considers

∇h(xk) + ∂g(xk+1) and ∇h(xk+1) + ∂g(xk+1).

6 Conclusion and Future Work

In this paper, for convex optimization problem, we present a novel DIN system, which is called
Hessian-driven Nesterov accelerated gradient flow. Convergence of the continuous trajectory and
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algorithm analysis are established via tailored Lyapunov functions satisfying the strong Lyapunov
property (cf. (26)). It is proved that explicit schemes posses the optimal(accelerated) rate

O
(
min

{
1/k2,

(
1 +

√
µ/L

)−k
})

,

and fast control of the norm of gradient is also obtained. This together with our previous work
in [13], has already positively answered the fundamental question addressed in [21], that we can
systematically and provably obtain accelerated methods via the numerical discretization of ordinary
differential equations.

In future work, we plan to extend our results along this line and develop a systematic framework
of developing and analyzing first-order accelerated optimization methods.
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