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Abstract

Convergence analysis of accelerated first-order methods for convex optimization prob-
lems are developed from the point of view of ordinary differential equation solvers. A
new dynamical system, called Nesterov accelerated gradient (NAG) flow, is derived
from the connection between acceleration mechanism and A-stability of ODE solvers,
and the exponential decay of a tailored Lyapunov function along with the solution tra-
jectory is proved. Numerical discretizations of NAG flow are then considered and
convergence rates are established via a discrete Lyapunov function. The proposed
differential equation solver approach can not only cover existing accelerated meth-
ods, such as FISTA, Giiler’s proximal algorithm and Nesterov’s accelerated gradient
method, but also produce new algorithms for composite convex optimization that pos-
sess accelerated convergence rates. Both the convex and the strongly convex cases are
handled in a unified way in our approach.
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1 Introduction

We consider iterative methods for solving the unconstrained minimization problem
min f(x), ey
xeV

where V is a Hilbert space, and f : V — R U {400} is a properly closed convex
function. We shall first consider smooth f on the entire space V and later focus on the
composite case f = h + g where both & (smooth) and g (non-smooth) are convex on
some (simple) closed convex set Q € V. We are mainly interested in the development
and analysis of accelerated first-order methods.

Suppose V is equipped with the inner product (-, -) and the correspondingly induced
norm ||-||. We use (-, -) to denote the duality pair between V* and V, where V* is the
continuous dual space of V and is endowed with the conventional dual norm ||-||.
For any interval I C R, denote by CK(I; V) the space of all k-times continuous
differentiable V -valued functions on I, and the superscript k is dropped when k = 0.
Let £2 € V be some closed convex subset, we say f € S/i (£2) if it is continuous
differentiable on £2 and there exists ;& > 0 such that

f()C)—f(y)—(Vf(y)»x—w2%le—yll2 Vx,ye8. 2

We call (2) the p-convexity of f and when p > 0, we say f is strongly convex. We
also write f € S}L’}L(.Q) if f e Slll (£2) and V f is Lipschitz continuous on £2: there
exists 0 < L < oo such that

IVf(x) = VW = Lllx =yl Vx,ye . 3

By [29, Theorem 2.1.5], this implies the inequality
L 2
f(X)—f(Y)—(Vf(y),x—Y)EEllx—yll Vax,yes. “)

For 2 = V, we shall write S llL(Q) and S ,][,IL('Q) as S }L and S ;1L, respectively.

The above functional classes are what we work with in this paper. As for the opti-
mization problem (1), we also care about the global minimizer(s) of f. For strongly
convex case, it is well-known that the minimizer exists uniquely. However, for con-
vex case, to promise the existence of minimizers, additional assumption, such as the
coercivity condition, is usually imposed. Throughout, we denote by argmin f the set
of global minimizers of (1) and assume it is nonempty.

One approach to derive the gradient descent (GD) method is discretizing an ordinary

differential equation (ODE), i.e., the so-called gradient flow:
xX'(t) ==Vfx@), t>0. @)

Here we introduce an artificial time variable ¢ and x’ is the derivative taken with
respect to t. For ease of notation, in the sequel, we shall omit # when no confusion
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From differential equation solvers to accelerated... 737

arises. The simplest forward (explicit) Euler method with step size n; > 0 leads to
the GD method

X1 = Xk — MV f (X).
In the terminology of numerical analysis, it 1s well known that this method is condi-

tionally A-stable (cf. Sect. 2), and for f € S L with 0 < u < L < 00, the step size
n, = 1/L is allowed to get the rate (see [29, Chapter 2])

0 (min{L/k, a +/L/L)’k}). 6)
One can also consider the backward (implicit) Euler method

Xkl = Xk — Mk V f (k1) @)

which is unconditionally A-stable (cf. Sect. 2) and coincides with the well-known
proximal point algorithm (PPA) [33]

1
Xit1 = Prox,, ;(x¢) = argmin (f(y) +—ly - xk||2> ®)
yev 20

Note that this method allows f to be nonsmooth and possesses linear convergence
rate even for convex functions, as long as n; > n > 0 for all k > 0.

1.1 Main results

Let us start from the quadratic objective f(x) = %xTAx over R?, for which the
gradient flow (5) reads simply as

_x/ = —14_)C7 (9)

where A is symmetric positive semi-definite and makes f € S 1 - Instead of solving
(9), we turn to a general linear ODE system

y' = Gy. (10)

Briefly speaking, our main idea is to seek such a system (10) with some asymmetric
block matrix G that transforms the spectrum of A from the real line to the complex
plane and reduces the condition number from «(A) = L/u to «(G) = O(/L/p).
Afterwards, accelerated gradient methods may be constructed from A-stable methods
for solving (10) with a significant larger step size and consequently improve the con-
traction rate from O((1 — u/L)*) to O((1 — /i/L)¥). Furthermore, to handle the
convex case u = 0, we combine the transformation idea with suitable time scaling
technique; for more details, we refer to Sect. 2.

@ Springer



738 H. Luo, L. Chen

One successful and important transformation is given below

.y I
B (M/V—A/V —M/J/1>’ an

where the built-in scaling factor y is positive and satisfies

YV'=u—vy, v0 =y >0. (12)

Based on this, for general f € S}L with © > 0, we replace A in (11) with V f and
write y = (x, v) to obtain a first-order dynamical system:

x'=v-—x,
1 13
v=Ea v Vi), (13)
14 14
Eliminating v, we arrive at a second-order ODE of x:
yx" +(u+y)x' +Vfx) =0, (14)

which is actually a heavy ball model (cf. (21)) with variable damping coefficients in
front of x” and x’. Thanks to the scaling factor v, we can handle both the convex case
(. = 0) and the strongly convex case (u > 0) in a unified way. Moreover, we shall
prove the exponential decay property

L) <e 'L(0), t>0, (15)
for a tailored Lyapunov function

V() | >0, (16)

L@ = fxm) — f&) + 2 o) — x|,

where x* € argmin f is a global minimizer of f.

Accelerated gradient methods based on numerical discretizations of the dynamical
system (13) with f € sh . L are then considered and analyzed by means of a discrete
version of the Lyapunov function (16). It will be shown that the implicit scheme (see
(72)) possesses linear convergence rate as long as the time step size is uniformly
bounded below. This matches the exponential decay rate (15) in the continuous level.
Also, for convex case i = 0, this implicit method amounts to an accelerated PPA, that
is very close to Giiler’s PPA [20] and enjoys the same rate O(1/ k2) (cf. Theorem 4).
In Sect. 5, for semi-implicit schemes with suitable corrections (either an extrapolation
or a gradient step), we prove the following convergence rate

) (min (LK%, (1 + \/M/L)_k}), (17)
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From differential equation solvers to accelerated... 739

which is optimal in the sense of [29]. Moreover, we can recover Nesterov’s optimal
method [27,29] exactly from a semi-implicit scheme with a gradient descent correc-
tion; see Sect. 6. Therefore, instead of using estimate sequence, our ODE approach
provides an alternative derivation of Nesterov’s method and hopefully more intuitive
for understanding the acceleration mechanism. From this point of view, we name
both (13) and (14) as Nesterov accelerated gradient (NAG) flow.

As a proof of concepts, we also generalize our NAG flow to the composite case

)I}éigf(X) = ;réig [h(x) + g(x)], (18)

where Q C V is a (simple) closed convex set, h € Sllt”lL(Q) with0 < pu <L < o0
and g : V — R U {400} is proper, closed, and convex. We use dom g to denote
the effective domain of g and assume that Q N domg # . Treating (18) as an
unconstrained minimization of F = f +igp where iy denotes the indicator function
of Q, the generalized version of (14) is a second-order differential inclusion

yx"+(u+y)x' +9F(x)>0. (19)

We shall give the existence of the solution to (19) in proper sense and then obtain the
exponential decay (15) for almost all 7 > 0.

For the unconstrained case Q = V, by using the tool of composite gradient mapping
[29, Chapter 2], a semi-implicit scheme with correction for the generalized NAG
flow (19) is presented and leads to an accelerated proximal gradient method (APGM);
see Algorithm 2. We also give a simplified variant that is closely related to FISTA
[12]. For the constrained problem (18), an accelerated forward-backward method is
proposed in Algorithm 4. Both two algorithms call the proximal operation of g (over
Q) only once in each iteration, and they are proved to share the same accelerated
convergence rate (17).

The rest of this paper is organized as follows. In the continuing of the introduction,
we will review some existing works devoting to the accelerated gradient methods from
the ODE point of view. Next, in Sect. 2, we shall explain the acceleration mechanism
from A-stability theory of ODE solvers and derive our NAG flow as well. Then in
Sect. 3 we focus on the NAG flow and prove its exponential decay. After that, acceler-
ated gradient methods based on numerical discretizations of NAG flow are proposed
and analyzed in Sects. 4, 5 and 6. Finally, in Sect. 7, we extend the our NAG flow to
composite optimization and propose two new accelerated methods with convergence
analysis.

1.2 Related works

The well-known momentum method can be traced back to the 1960s. In [34], Polyak
studied the heavy ball (HB) method

Xkl = Xk —aV f(x) + Bk — xxk—1) (20)
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740 H. Luo, L. Chen

and its continuous analogue, the heavy ball dynamical system:
x"+oax' +arVF(x)=0. (21)

Local linear convergence results for (20) via spectrum analysis were established in
[34, Theorem 9]. Note that the HB method (20) adds a momentum term up to the
gradient step and is sensitive to its parameters. For f € 8 L, it shares the same
theoretical convergence rate (6) as the gradient descent method see [18,40]. To our best
knowledge, no work has established the global accelerated rate (17) for the original
HB method (20). Recently, Nguyen et al. [26] developed the so-called accelerated
residual method which combines (20) with an extra gradient descent step:

Vi =xx —aV f(xp) + Bl — xk—1),

Xkl = Yk — ﬁ S Or)-

Numerically, they verified the efficiency and usefulness of this method with a restart
strategy. We refer to [1,3,11,19] for further investigations of the HB system (21).

To understand an accelerated gradient method with the rate O (1/k2) proposed by
Nesterov [27], Su, Boyd and Candes [37] derived the following second-order ODE

X4 ?x/ FVF) =0, >0, (22)

where @ > O and f € Sy, Ifa > 3or 1 < a < 3and (f — f(x*)©@ D/ s
convex, they proved the decay rate O(r=2). If @ > 3 and f is strongly convex, they
also obtained a faster rate O(r~2%/3). Later on, Aujol and Dossal [10] established a
generic result:

Cct™?, ifo >28+1,

JEE SO cpmarsrn g0 < g <2541, @9

where 8 > O and (f — f (x*))# is convex. Almost at the same time, Attouch et al.
[8] obtained the estimate (23) for § = 1 and considered numerical discretizations
for (22) with the convergence rate O (k~ ™in{2.2¢/3}) " Also, Vassilis et al. [42] studied
the non-smooth version of (22):

X4 %x/ £9f(x)30. (24)

They proved that the solution trajectory of (24) converges to a minimizer of f and
derived the decay estimate (23) for 8 = 1. For more works and generalizations related
to the model (22) and the corresponding algorithms, we refer to [2,5-7,14] and refer-
ences therein.
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From differential equation solvers to accelerated... 741

Recently, Wibisono et al. [43] introduced a Lagrangian

ftDt(S)dS
Eyow.ty = & <ﬁ(t)

B0 \ 2 lwl?® — ocz(t)f(y)> : (25)

for smooth and convex f, where « : Ry — R, is continuous and 8 : Ry — R,
satisfies

B’ = —ap, B(0)=po>0. (26)

The Lagrangian (25) itself introduces a variational problem, the Euler-Lagrange equa-
tion to which is

[ —
y = a(w —y), o7
pw’ = —aV f(y).
They then established the convergence rate (cf. [43, Theorem 2.1])
FO@) = f&*) < e ha@d ), (28)

by means of the Lyapunov function
: 1
L) = b “OC[F ) = F6N] + 5 fwie) — [

Following this work, for f € 5;11 with > 0, Wilson et al. [44] introduced another
Lagrangian whose Euler-Lagrange equations reads as

(29)

y =aw—y),
pw' = pa(y —w) —aV (),

with the same scaling function « in (25). They proved the decay estimate (28) as well,
by using the Lyapunov function

L) = el %[ £ = fo) + 5 Jwo -] (30)
When o = /i, (29) gives the following model

Y2/ + V() =0, €19

which reduces to an HB system (cf. (21)); see also Siegel [38].

In addition, Siegel [38] and Wilson et al. [44] proposed two semi-explicit schemes
for (31) individually. Both of their schemes are supplemented with an extra gradient
descent step and share the same linear convergence rate O ((1 — /jt/L)%).
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742 H. Luo, L. Chen

Recently, introducing the so-called duality gap which is the difference of appropriate
upper and lower bound approximations for the objective function, Diakonikolas and
Orecchia [17] presented a general framework for the construction and analysis of
continuous time dynamical systems and the corresponding numerical discretizations.
They recovered several existing ODE models such as the gradient flow (5), the mirror
descent dynamic system and its accelerated version. We mention that the derivation
of our NAG flow and analyses of discrete algorithms are fundamentally different from
their duality gap technique.

2 Stability of ODE solvers and acceleration

In what follows, forany M € RI*d & (M) denotes the spectrum of M, i.e., the set of all
eigenvalues of M. The spectral radius is then defined by p(M) := max; ¢ (p) |A|, and
when M is invertible, its condition number k(M) := p(M~Y)p(M). If 0 (M) C R,
then Apin(M) and Apax (M) stand for the minimum and maximum of o (M), respec-
tively. Moreover, |-||, is the usual 2-norm for vectors and matrices.

To present our main idea as simple as possible, in this section, unless other spec-
ified, we restrict ourselves to the quadratic objective f(x) = %xTAx, where A is a
symmetric matrix with the bound

0<p:=2%Inin(A) <A < Amax(A):=L VAco(A).

For this model example, V f(x) = Ax and the gradient flow (5) reads as x’ = —Ax.
The global minimal is achieved at x* = 0, and when p > 0, the condition number of
Aisk(A)=L/pu.

2.1 A-stability of ODE solvers
Let G € R9%4 and assume PRe(1) < 0 for all A € o (G). For the linear ODE system
Y =Gy, y(0) =y eR’ (32)

itis not hard to derive that || y(#)|l, — Oast — oo (see [13, Theorem 7] for instance).
Hence y* = 0 is an equilibrium of the dynamic system (32).

We now recall the concept of A-stability of ODE solves [23,39]. A one-step method
¢ for (32) with step size « > 0 can be formally written as

Vi+1 = Eg(a, G)yx. (33)

As y* = 0 is an equilibrium point, (33) also gives the error equation. The scheme ¢
is called absolute stable or A-stable if p(E4 (o, G)) < 1 from which the asymptotic
convergence y; — 0 follows (cf. [16, Theorem 6.1]). If p(Ey(a, G)) < 1 holds for
all o > 0, then it is called unconditionally A-stable, and if p(Eg(c, G)) < 1 for
any o € I, where [ is an interval of the positive half line, then the scheme is called
conditionally A-stable.
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From differential equation solvers to accelerated... 743

If Ey(a, G) is normal, then || Eg (o, G)|l2 = p(Ey (o, G)). Therefore for A-stable
methods the linear convergence follows directly from the norm contraction

Yit1lla = p(Eg(a, G) llyilla - (34)

In general cases, however, bounding the spectral radius by one does not imply the
norm contraction, i.e., (34) may not be true when Ey(a, G) is non-normal, even if
(33) is A-stable. Nevertheless, we shall continue using the tool of A-stability through
spectral analysis and comment on its limitation in Sect. 2.6.

2.2 Implicit and explicit Euler methods
It is well known that the implicit Euler (IE) method

Yk+1 — Yk
o

= Gyk+1

is unconditionally A-stable. Indeed, Eg (o, G) = (I — aG) and p(ErE(a, G)) <1
for all « > O since all eigenvalues of oG lie on the left of the complex plane and their
distances to 1 are larger than one. Moreover, as it has no restriction on the step size,
the implicit Euler method can achieve faster convergent rate by time rescaling which
is equivalent to choosing a large step size.

In contract, the explicit Euler method

k1 — Yk
Yl 7Yk _ Gy, (35)

is only conditionally A-stable. Let us consider the case G = —A with ¢ > 0. Then (35)
is exactly the gradient descent method for minimizing %xTAx. It is not hard to obtain
that

p(Egp(@, —A)) = p(I —aA) =max { |l —apul, [l —aLl}. (36)

Hence p(Egp(a, —A)) < 1 provided 0 < o < 2/L. Thanks to the symmetry of A,
we have || Egp(o, —A)|l> = p(Egp(e, —A)) and the norm convergence with linear
rate follows. Moreover, based on (36), a standard argument outputs the optimal choice
a* =2/(u + L), which gives the minimal spectrum

Ecp(@*. — A = min p(/ — aA) = <D =1 37
|Ecp(a™, )||2—gl>18,0( (o4 )—m- (37)

A quasi-optimal but simpler choice is o, = 1/L which yields

1
K(A)

Ecp(ax, —A)ll2 = p(I —axA) =1 — (38)
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744 H. Luo, L. Chen

We formulate the convergence rates (37) and (38) in terms of the condition number
Kk (A) as it is invariant to the rescaling of A, i.e., k (cA) = x(A) for any real number
¢ # 0. To be A-stable, one has to choose 0 < « < 2/Amax(A). It seems that a
simple rescaling to cA can reduce Amax(cA) and thus enlarge the range of the step
size. However, the condition number « (cA) = «(A) is invariant. From this we see
that for the GD method (35), the simple rescaling cA is in vain.

The magnitude of the step size is relative to min |A(G)|. To fix the discussion, we
chose G = —A/u in (35) so that Amin(A/u) = 1. Then in order for the explicit Euler
method to be A-stable it is equivalent to choose @ = O(1/k(A)) which leads to the
contraction rate 1 — 1/« (A). Consequently for ill-conditioned problems, a tiny step
size proportional to 1/« (A) is required.

Rather than the rescaling, our main intuition is to seek some transformation G
of A, that reduces «(A) to k(G) = O(+/k(A)). We wish to construct explicit A-
stable methods which can enlarge the step size from O (1/k(A)) to O(1//k(A)) and
consequently improve the contraction rate from 1 — 1/k(A) to O(1 — 1//k (A)).

2.3 Transformation to the complex plane

Let us first consider the case u > 0 and embed A into some 2 x 2 block matrix G
with a rotation built-in. Specifically, we construct two candidates

0 1 -1 1
Gy = (—A/M _21> and Gy, = (1 — Al —I) . 39
Due to the asymmetrical fact, 0 (A) will be transformed from the real line to the

complex plane. This may shrink the condition number; see the following result.

Proposition 1 For G = Gy, or Gy, given in (39), it satisfies Re(A) < 0 for any
A € o(G), which promises the decay property ||y (t)|l, — O for the system y' = Gy.
Moreover, we have k(G ) = kK (Gyg) = VK (A).

Proof Let us first consider G = G,;,. As A is symmetric, we can write A = U AU "
with unitary matrix U and diagonal matrix A consisting of eigenvalues of A. By

applying the similar transform to G with the block diagonal matrix diag(U, U), it
suffices to consider eigenvalues of

Ry = (_09 1_2>, 0co(A/n).

It is clear that det Ry, = 6 and tr R,;; = —2 < 0. In addition, since |tr RHB|2 <
4det R, any eigenvalue Ar € o (R,;;) is a complex number and

Re(hg) = —1, |igl = /det Ry, = V6.

As1 =Amin(A/) <0 < Amax(A/p) = k(A), we conclude « (G,z) = vk (A).

HB?
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Apply the similar transformation with P = G (1)> , we observe that

_ -1 1
Ry = PRy P '= <1_9 _1>'

So 0 (Ry,g) = 0(R,;) and consequently «(Gy,5) = +/k(A). This completes the
proof of this proposition. O

We write y = (x, v) | and eliminate v in y’ = Gy to get a second order ODE of x,
in which we replace Ax by general form V f(x). Both G;; and G, yield the same
thing

ux" +2ux’ + Vf(x) =0, (40)

which is a special case of the HB model (cf. (21)).

Note that we can find alot of transformations G and derive corresponding ODE mod-
els. Indeed, given any G that meets our demand, both ¢G and QG Q! are acceptable
candidates, where ¢ > 0 and Q is some invertible matrix. We are not going further
deep beyond those two transformations given in (39) for the strongly convex case
@ > 0 but aim to combine the transformation with a refined time scaling to propose
another one for convex case 4 = 0 in Sect. 2.5.

2.4 Acceleration from a Gauss—Seidel splitting

We now consider numerical discretization for (32) with G = G, and G, given
in (39). As discussed in Sect. 2.2, the implicit Euler method is unconditionally A-
stable. But computing (/ — «G)~! needs significant effort and may not be practical.

One may hope that the explicit Euler method yx+1 = (I + aG)y; will be A-stable
with step size « = O(1/k(G)) = O(1//k (A)). Unfortunately, unlike the discussion
for (35) with G = — A, where o (I — «A) lies on the real line and p(I — @A) can
be easily shrunk by choosing ¢ = 1/p(A) (cf. (36)), the general asymmetric G
spreads the spectrum on the complex plane. For both G = G;; and G = G, we
have H(A) = —1 for all A € o(G). Denote by r = p(G). Then ,02(1 + aG) =
(1 — a)? + a2(r2 = 1). To be A-stable, requiring p(I + «G) < 1 is equivalent to
letting 0 < o < 2/r2 = O(1/k(A)), where small step size « = O(1/k(A)) is still
needed. The optimal choice a* = r~2 only gives

pI+a*G) =1-a"=1-0(/k(4)),

where no acceleration has been obtained.

We then expect that an explicit scheme closer to the implicit Euler method will
hopefully have better stability with a larger step size.

Motivated by the Gauss—Seidel (GS) method [45] for computing (I — aG)~ !, we
consider the matrix splitting G = M + N with M being the lower triangular part of G
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746 H. Luo, L. Chen

(including the diagonal) and N = G — M, and propose the following Gauss—Seidel
splitting scheme

Ye+1 — Yk
o

= Myit1 + Nyx (41)
which gives the relation
Vi+1 = E(o, G)yx, E(o,G):=( — aM) NI +aN). (42)

Note thatfor G = G and Gy, the scheme (41) is still explicit as the lower triangular
block matrix I — M can be inverted easily, without involving A~!.

The spectrum bound is given below and for the algebraic proof details, we refer to
“Appendix A”.

Theorem 1 For G = G, or Gy, given in (39), if 0 < o < 2//k(A), then the
Gauss—Seidel splitting scheme (41) is A-stable and

p(E(a, G)) < m-

2.5 Dynamic time rescaling for the convex case

The ODE model (40) given in Sect. 2.3 cannot treat the case u = 0 and the previous
spectral analysis fails. Equivalently the condition number «(A) is infinity and the
spectrum bound becomes 1. To conquer this, a careful rescaling is needed. Throughout
this subsection, we assume & = 0.

For the gradient flow

X' (1) = =V f(x(®)), (43)

one can easily establish the sub-linearrate f (x(t))— f (x*) < C/t;see[37]. Torecover
the exponential rate, we introduce a time rescaling 7(s) = ¢* and let y(s) = x(¢(s)).
Then (43) becomes the following rescaled gradient flow

y($)y'(s) = =V f(y(s5)), (44)

with the scaling factor y(s) = e°. Besides, the previous sublinear rate f(x(¢)) —
f(x*) < C/tturns into f(y(s)) — f(x™) < Ce™*. That is in the continuous level, we
can achieve the exponential decay through suitable rescaling of time even for © = 0.

Now let us go back to our model case f(x) = %xTAx with © = 0 and Apax (A) =
L. Coupled with the transformation G, we consider

V =Gy, G<y>=(_;§y é) 45)
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From differential equation solvers to accelerated... 747

where y = (x, v) " and

/

y==v. v(0)=y>0. (46)
This gives a second-order ODE in terms of x:
yx"+yx' +Vfx) =0, 47)

which is in the HB type but with variable damping coefficients.
Obviously, the implicit Euler method for solving (45) is still unconditional A-stable.
We now apply the GS splitting (41) to (45) and get

Vi+1 = E (o, G(Vi1)) Yk (48)

where E(ax, G(yk+1)) is defined in (42). The equation (46) is discretized by

Vi+l = Yk — O Vik+1- (49)

Eliminating v in (48) will give an HB method with variable coefficients

ApOlk—1 (2774
Xkl = X — ————V f(xp) + ————— (0 — xx—1).
Yk + Ok Vk O—1 + Q-1

Instead of studying the spectrum bound E (g, G (yk+1)) which is 1, we apply the
scaling technique to obtain a regularized matrix

—1
~ 1 [0 I O
E;, = E , G >
k <0 )/k+11> (ks G(Vi+1)) <0 yk1>

which is nearly similar with E (o, G(yk+1)). Set zx = (é Vf1> Yk, then the discrete

system (48) for {y;} becomes
21 = Exzz, (50)

With a careful chosen step size, the spectrum bound of Ek is given below and for
the algebraic proof details, we refer to “Appendix A”. We note that, the step size in
Theorem 2 is only to agree with the setting of Lemma B2 and for general choice
Lot,% /vx = O(1) and suitable initial value yy, it is possible to maintain the spectrum
bound (51) together with the decay estimate (52).

Theorem2 If y9 = L and Loz,% = (1 + ag), then both the scheme (48) and its
equivalent form (50) are A-stable and we have

~ Vi+1 1
p(Ey) = = = : (51)
Yk
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which further implies that
k—1 "
[[pEN=""=0u&". (52)
i=0 Yo

2.6 Limitation of spectral analysis

For quadratic objective f, both the ODE models (40) and (47) are linear and the
spectrum bound of E(a, G) for the Gauss—Seidel splitting (42) is derived. But as
pointed out in the beginning, for A-stable methods, bounding the spectral radius by
one is not sufficient for the norm convergence if the matrix E (¢, G) is non-normal,
see convincible examples in [23, Appendix D.2] and [23, Appendix D.4].

Moving beyond quadratic f and nonlinear ODE systems, transient growth or insta-
bility of perturbed problems can easily lead to nonlinear instabilities. Particularly, for
the HB system (21), it is shown in [22] that the parameters optimized for linear ODE
models does not guarantee the global convergence for a nonlinear system.

To provide rigorous convergence analysis for both continuous and discrete lev-
els, in the sequel we shall introduce the tool of Lyapunov function. Following many
related works [6,37,43], we first analyze some proper ODEs via a Lyapunov function,
then construct optimization algorithms from numerical discretizations of continuous
models and use a discrete Lyapunov function to establish the convergence rates of the
proposed algorithms.

3 Nesterov accelerated gradient flow

3.1 Continuous problem

In the previous section, we have obtained two ODE models for quadratic objective
fx) = %xTAx with u > 0 and u = 0, respectively. To handle those two cases in a

unified way, we combine G, in (39) with G(y) in (45) and consider the following
transformation

I I
G= (M/V—A/V —u/y1>’ (53)

where

Vi=u—vy, v =y>0. (54)
One can solve the above equation and obtain

y()=pn+@o—we™", t>0.
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Since yp > 0,wehavethaty () > Oforalls > Oand y (#) converges to u exponentially
and monotonically as t — 4-o00. In particular, if y9p = u > 0, then y(¢) = pu.
Therefore, when u = 0, (53) reduces to (45) and when yg = u > 0, (53) recovers
(39) indeed. Correspondingly, the transform (53) gives the system

x' =v—ux, 55)
yv = u(x —v) — Ax.

Heuristically, for general f € S ,IL with . > 0, we just replace Ax in (55) with
V f(x) and obtain our NAG flow

x' =v—ux,
/ (56)
{ yv = px —v) = VfFkx),

with initial conditions x(0) = xg and v(0) = vg. The equivalent second-order ODE
(will also be abbreviated as NAG flow) reads as follows

yx" + 4"+ Vfx) =0, (57)

with initial conditions x(0) = x¢ and x'(0) = vg — x¢. Clearly, if yp = u > 0,
then (57) becomes (40), and if u = 0, then (57) coincides with (47).
Motivated by (30), we introduce a Lyapunov function for (56):

£y = 1) — 16+ 22 o) — x|

2
,
2

> 0. (58)

In addition, we need the following lemma, which is trivial but very useful for the
convergence analysis in both of the continuous and discrete levels.

Lemma 1 Foranyu,v,w € V, we have
2 2 2
2 —v,v—w) = lu —w|” = flu —vl|* = [lv—w|~.

We first present the well-posedness of (57) and prove the exponential decay property
of the Lyapunov function (58).

Lemma2 If f € S/ILIL with i > 0, then the NAG flow (57) admits a unique solution
x € C%([0, 00); V) and moreover

L) <L) - %nx’(r)nz, (59)

which implies that

t
L) + %/ ¢ ' (9)] P ds < e L), > 0. (60)
0
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Proof Basically, as V f is Lipschitz continuous, applying the standard existence and
uniqueness results of ODE (see [9, Theorem 4.1.4]) yields the fact that the system (56)
admits a unique classical solution (x,v) € CL([0, 00); V) x CL([0, 00); V). This
implies that x’ = v — x € C'([0, 00); V), and therefore x € C2([0, 00); V) is also
the unique solution to our NAG flow (57).

It remains to prove (59), which yields the exponential decay (60) immediately. A
straightforward calculation yields that

L) = (Vf(x),x’)—i— % Hv—x*”z—l—y(v’,v —x*),

and by (54) and (56), we replace y’ and v’ by their right hand side terms and obtain

o= x| + (et —v) = V), v —x*).  (61)

L@ = (Ve x)+ 5 ; v

Let us focus on the last term. Thanks to Lemma 1,
2% 2 2
px—vv =2 =2 (Hx =27 =l = ol = o — x| )
and the gradient term is split as follows

—(Vf@),v—x*) = —(Vf(x),v—x) = (Vf(x),x —x¥). (62)

By the relation x” = v — x, the first term in (62) becomes (—Vf(x), x/> which cancels
the first term in (61). Combining all identities together gives

L0 =5 [x = = (Vi@x =)= T o P = S ©3)

As f is pu-strongly convex (cf.(2)), there holds
Sl =2 P = (V@) x = 2] = () = f 0,
and plugging this into (63) implies that
L) = =L@ = S 1P,

which proves (59) and thus completes the proof of this lemma. O
Remark 1 According to the proof of Lemma 2, the Eq. (54) for y can be relaxed

to y' < u — y. This makes (61) and (63) become inequality but leaves the final
estimate (59) invariant. O
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3.2 Rescaling property

Based on our NAG flow (56) (or (57)), it is possible to use time scaling technique to
construct more ODE systems with any desirable convergence rate. It is worth distin-
guishing the connection and difference with existing dynamical models.

Specifically, let « be any continuous nonnegative function on R, and consider the
time rescaling

t(r) = /t a(s)ds, 7 >0. (64)
0
Set y(r) = x(t(7)), w(r) = v(t(r)) and B(t) = y (t(r)), then it is clear that

Y'(0) =1 (0)x(1(1) = a(0)x'(1(0)),

Similarly, w’(t) = a(r)v'(¢(r)) and plugging those facts into (56) gives the scaled
NAG flow

[ o

Bw' = pa(y —w) —aVi(y),

with initial conditions y(0) = xg and y’(0) = «a(0)x’(0). By Remark 1, the Eq. (54)
can be replaced by ¥’ < u — y, which becomes

B’ <aln—pB). BO)=y. (66)

Correspondingly, the Lyapunov function (58) reads as follows

~ (0
L(t) = fy(r) — f(&x) + ﬂT |w@ —x*|*, >0
Analogously to (59), we can prove
£ < —al ~ 2w -2,
2
which implies that
Lty <e b Oy >0 (67)

Therefore, larger scaling factor o promises faster decay rate.

We note that the scaled NAG flow (65) is very close to the two models (27) and (29),
which are derived in [43] and [44] respectively, via the variational perspective. Indeed,
they differs mainly from the coefficient of w’. By (66), an elementary calculation gives

a(s)ds

B(T) <+ (o — e ho >0
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Therefore, (65) chooses variable coefficient 8(t) for © > 0, while (27) considers
dynamically changing coefficient (26) only for © = 0 and (29) adopts fixed parameter
u > 0. For strongly convex case u > 0, if we take 8 = u, which satisfies (66),
then the scaled system (65) coincides with (29). For convex case u = 0, if both (27)
and (66) are equalities, then (65) agrees with (27). Hence, we conclude that our NAG
flow system is more tight and provides a unified way to handle © = 0 and & > 0.
Now, let us look at a concrete rescaling example. Let the scaling factor « satisfy

20 <p—a?, a(0) = . (68)

For instance, the following choice is allowed:

75 b
VY% hop <2 (69)
\/%T—f-b

For the equality case of (68), we have a closed-form solution

ﬂ ifu=0
\/%T—'—Z’ M_ ’

wr _
evi oy

M.—
Vit fa,

a(t) =

a(t) = (70)

, ifu >0,

where

= L VY0 e(—1,1).
TR SVETS
We now set 8 = a2 which fulfills (66) by our assumption (68), then the scaled NAG
flow (65) gives a new HB system

" 1 2 1 /
y +&(u+a —a)y +Vf(y)=0. (71)
According to (67), we have the estimate

b £(0)
(VYT + b)P’
(1 + a,)2L(0)
(eVrT/2 + aue_x/ﬁf/z)z’

if o satisfies (69),
L(r) <

if « satisfies (70) and ;& > 0.

Particularly, if i > 0 and o satisfies (70) with yo = /i, then a(t) = /i and (71)
recovers (31) with the same rate O(e’«/ﬁ’). Moreover, if 4 = 0 and « satisfies (69)
with yp =4 and b = 2, then a(t) = 2/(r 4+ 1) and (71) becomes

3
y' 4+ ——y +Vf(y)) =0, >0,
T+1
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which gives the decay rate O (r ~2) and coincides with the prevailing ODE model (22)
derived in [37].

4 An implicit scheme

Exponential decay of an implicit discretization for solving (56) can be established,

which is more or less straightforward since one can easily follow the proof from

the continuous problem. However, the implicit scheme requires efficient solver or

proximal calculation and may not be practical sometimes. It is presented here to

bridge the analysis from the continuous level to semi-implicit and explicit schemes.
Consider the following implicit scheme

Xk+1 — Xk

w Vk1 — Xt 1
(72)
Vktl — Uk M 1
= = D — ven) — — V. (k)
(675 Yk Yk

where o > 0 denotes the time step size to discretize the time derivative and the
parameter Eq. (54) is also discretized implicitly

Yi+1 — Vk
(073

== Vit1, 70> 0. (73)

We shall present the convergence result for the implicit scheme (72)—(73). To do
so, we introduce a suitable Lyapunov function

Li= flx) — fx*) + % o — x*[)?

) (74)

which is clearly a discrete analogue to the continuous one (58).

Theorem3 If f € Slll with u > 0, then for the scheme (72) with ay > 0, we have

Liy1 < k € N.

1+o’
Proof 1t suffices to prove

Lit1 — Ly < —ox Ly (75)
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Let us mimic the proof of Lemma 2. Instead of the derivative, we compute the
difference as follows

Lir1 — Ly =f (1) — f ) + w vt — x*”2

+ 2 (loer =7 = e =)
(273 %12
=f k1) — f () + 7(# = Vi) || ok — x|
+ Yk (V1 — vk, (Vg1 4+ v0)/2 — x¥)
Analogously to the continuous level, we focus on the last term

Vi (Vi1 — ve, (kg1 4+ ) /2 — x7¥)
Yk
= vk (k1 — vk, Vkg1 — x¥) — > ok — vl
By (72), it follows that
Vi (Vka1 — ve, i1 — x¥)
= porg (X1 — Vit Vi1 — X)) — o (V f (1), vk — x7),
and we use Lemma 1 to split the cross term into squares:
2 (X1 — Ukt Vi1 — X¥)
2 2 2
= |kt — 2|7 = Mxrgr — vkt 17 — JJorgr — x|

For the gradient term, we have vg41 — Xx* = Vg1 — Xg+1 + Xk+1 — x™ and use (72)
to obtain

— o (Vf (kp1), vkg1 — x¥)
= —(Vf (kr1)s Xer1 — xx) — o (Vf (1), xu1 — x7).

Consequently, using the p-strongly convex property (cf.(2)) of f and dropping surplus
negative square terms, we see

Liy1 — Ly < — oLyt

This proves (75) and concludes the proof of this theorem. O

We observe from Theorem 3 that the fully implicit scheme (72) achieves linear
convergence rate as long as oy > o > 0 for all £ > 0 and larger oy yields faster
convergence rate. We also mention that (72) can be rewritten as

X1 = Prox,, ¢ (vi),
Xk+1 — Xk (76)

V41 = Xk+1 + Ot—’
k
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where the proximal operator prox,, , has been introduced in (8) and

Yk + o e = o g = YEORTk + (Vk + po)xi
I+ap ' e+ (w+ v Vi + (w+ya

Yi+1 =

Therefore, it allows f to be nonsmooth and we claim that Theorem 3 still holds true
in this case. One just replaces the gradient V f(xi+1) with the subgradient (yx —
X 1)/ € 3 f (oes1); see (105) and (112),

For convex case, i.e., u = 0, our method (76) is very close to Giiler’s proximal
point algorithm [20]

Xip1 = Prox, (). Mk = ot/ Vit1,

Xk+1 — Xk
Ver1 = x4
(2773
where yiy+1 — vk = —ox vk and yr = ogvg + (1 — o) xg. Indeed, with suitable step

size, they share the similar rate; see [20, Theorem 2.3] and Theorem 4 below.

Theorem 4 [f f is proper, closed and convex and we choose (x,% = iy (1 + ag) with
Nk > 0, then for the proximal point algorithm (76) with ;© = 0, we have

Lo - 4L

— <Lp < — ,
(1 + Yi2g J/vom)? Q2+ Y42 romi)?

(77)

which means llefio SNk = 0o then Ly — 0 as k — o0o0. Moreover, it holds that

4 1 i} 1 )
Lk§m<% (f@0) = F(x) + 3 [Juo = x ||2>- (78)

Proof For convenience and later use, define a sequence {px} by that

k—1
1
:1, = . kZl 79
£0 Pk | | o (79)

=

As mentioned above, Theorem 3 holds true for such a nonsmooth f and thus it is
evident that £ < p L. Invoking Lemma B2 proves (77) and it is trivial to obtain (78)
from (77). This finishes the proof. O

Remark 2 Note that the sequence {y;} in (73) is bounded: 0 < yx < max{u, yo}
and yx — u as k — oo. Hence, even for large yy, the Lyapunov function Ly is
asymptotically bounded as k — oo. In addition, from (77) and (78), we see that, for
small yy, the convergence rate depends on y; but large )y does not pollute the final
rate. This fact also holds true for all the forthcoming convergence bounds. O
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5 Gauss-Seidel splitting with corrections

This section considers the Gauss—Seidel splitting (41), which is a semi-implicit dis-
cretization. In Sect. 2.4, we have established the spectrum bound O (1 — </u/L) with
step size o = O(4/p/L) for quadratic objectives. However, as we summarized in
Sect. 2.6, spectral analysis is not sufficient for (norm) convergence.

Indeed, in the sequel, we further show that, for the discrete Lyapunov function (74),
with any step size o > 0, the naive discretization (41), reformulated as (80), does
not lead to the contraction property like (75). This motivates us to add some proper
correction steps.

5.1 The Gauss-Seidel splitting

Recall the Gauss—Seidel splitting (41): given step size ox > 0 and previous result
(xk, Vi), compute (Xg+1, Vk+1) from

Xk+1 — Xk

o = Uk — Xk+1,
(80)
Vktl — Uk M 1
S D —vn) — — V().
(073 Yk Yk

In addition, the parameter Eq. (54) of y is still discretized implicitly via (73).

Lemma3 If f € 8,1 with > 0, then for (80) with any step size oy > 0, we have

Yk
Lit1 — Ly < —oLyy1 — ) lvesr — vill? — ok (V f k1) V1 — k), (81)

and

2
(07
Liv1 — L < —og Ly + ﬁ IV f G DI (82)

Proof Following the proof of Theorem 3, we start from the difference

2
Liy1 — Ly =f (x1) — f(xx) — ka1 — x|
ot Y
— = g — vt 12 = S ok — el
2 2
otk P
- |kt = x* |7 = o (V f Gokar1)s v — x%).

Ok Yk+1 “
2

+
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Using the update for x; in (80), we split the gradient term as below

— e (Vf (xg1)s vrg1 — x¥)
= —a (V f(Xk41), Vk1 — V) —
— a (V f (k1) xkgr — x¥)
= —a (Vf(xk41)5 V1 — k) — (V f (Xk1)5 Xk1 — Xk)
).

— g (V f (k1) Xpp1 —

(V f(xrg1), o (g — Xpg1))

AsfeS ! we obtain that

Yk
Liy1 — Ly < — o Liy1 — ) vkt — vrll® — etk (V f (K1) V1 — V)

Ak 2 M 2
- lxks1 — vt ll” — ) lxks1 — xkll”.

Ignoring all the negative terms of the second line, the above estimate implies (81).

As we see, different from (75), the estimate (81) contains a combination of a nega-
tive term and another cross term. Obviously, an easy application of Cauchy-Schwarz
inequality yields

2
Yk o
=5 o = vell? = e (V f (k1) Vi1 — 0) < ﬁ IV f D)2

This proves another bound (82) that only involves a positive gradient norm. O

5.2 A predictor-corrector method

To conquer the cross term —o (V f (Xk+1), Vk+1 — Uk) in (81), we add an extra extrap-
olation step to (80) which can be thought as an semi-implicit discretization of x’ = v—x
with the newest update vi41. More precisely, consider

Yk — Xk
= Vk — Yk,
(073

Vkl — Uk M 1
——— = —(k — Vk+1) — — V), (83)

073 Yk Yk
X1 — Xk
—————— = Vg1 — Xkt

O

This is in line with the spirit of the predictor-corrector method for ODE solvers [39,
Section 3.8]. The variable yy is the predictor produced by an explicit scheme and xz1
is the corrector by an implicit scheme. It can be also thought of as a symmetric Gauss—
Seidel iteration for approximating the implicit Euler method. Again, the parameter
Eq. (54) of y is still discretized via (73).
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As the first two steps of (83) agree with (80), with x;4; being yg, recalling the
estimate (81), we have

= = Yk
Ly —Lr < —ar Ly — > vkt — viell® — ok (V F k), Vi1 — V)

where

J/k+1

Li=fOon) — £ + 22 o — x| (84)

Therefore, it follows that

Ly Vi 2
vkt — vell” —

~ . )
L 1+ozk 2(1+(¥k) 1+ ( Fr)s Vip1 — vi) -

From the update for y; and x4 in (83), we find the relation

Xkl — Yk = (V41 — Vi),

1+ o

andif f € S L, then there comes the estimate (cf. (4))

Lit — Li = fxes1) — FOr)

IA

(97000, 0kt =) + 5 it = el
(6773

1+ oy

Lo?

Tk —ul?
+2(1+Olk)2 vkt — el

(Vi) vt — vg)

As a result, we obtain

L Lao? 'k
Liy1 < +( kY vkt — vill® (85)

T 4o 20+ op)? 2(1 + o)

The second term vanishes if we choose suitable step size; see the theorem below.

Theorem 5 Assume that | € S:L lL with) < u < L < 0o and Lak = (1 + ay),
then for the predictor-corrector scheme (83) together with (73), we have

Lot < . keN, (86)

k
l+a

where Ly, is defined by (74). Consequently, for all k > 0,

—k
. 4L [min{yo, u}

L <L _ 1+, — , 87

k 0 X min W EENI5T < 7 ) 87
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and moreover, for all k > 1,

1—k
] 4 fmin{yp, u}
Ly < Cyy, L X min ok (1 + T) , (88)

where

Cpo = (£ o) = F() + = Jug — [ (89)
Y0 2
Proof The inequality (85) suggests the choice La,% = k(1 + ax) and promises (86).
Recalling the sequence {pr} defined by (79), we have L; < prLo. Hence, using
Lemma B2 gives the decay estimate of p; and proves (87).
It remains to check (88) for all k > 1.
From Lemma B2 we easily get

4L _ 4Gt
(Vok+2VD)2 ~ K

peco = (F00) = 1)+ 2 Jug — ")
(90)

On the other hand, by the relation Laé = (1 + «p), it is evident that

!
= — VAL +v2 ),
o 7L (yo+ Y0 +J/0>

which implies

1 2L L

= < .
Iroo hon 4 JapL+yE 7

The above estimate also indicates that

k—1

Pk 1
= Cyo,Lp_ = Cy.L X H
1 :
i=1

1 +o;

Lo Pk
1+ ap p1

Lo =

Applying Lemma B2 shows o > «/min{yp, n}/L and it follows that

1—k
PLo < Comr x (14 min(yo, /L)

Collecting this estimate and (90) establishes the final rate (88) and thus completes the
proof of this theorem. O

Remark 3 We mention that the estimate (88) verifies the claim made previously in
Remark 2. That is, the convergence rate given in Theorem 5 depends on small yq but
is robust when yy > L. O
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5.3 Correction via a gradient step

Motivated by the estimate (82), we can also aim to cancel the squared gradient norm.
One preferable choice is the gradient descent step and according to our discussion
below, any other correction step satisfying the decay property (94) is acceptable. Note
that the two numerical schemes proposed in [38,44] for the HB Eq. (31) also have
additional gradient steps.

As what we did before, replace x| by yx in (80) and consider the following
corrected scheme: given o > 0 and (xg, vk), compute (xg41, Vg+1) from

Vi — Xk
- = Vk — Yk
Vk+l — Uk U 1
= = Sk — ver) — — V), 1)
o Vi Vi
1
Xkpl — Yk = — zvf(Yk)~

The implicit discretization (73) for the parameter Eq. (54) keeps unchanged here. In
the first equation y; can be solved in terms of the known data (xx, vg). After that, we
evaluate the gradient V f(y;) once and use it to update (xg41, Vg+1)-

Theorem 6 Assume that f € SIILIL with) < u < L < oo and L(x,% = (1 + ay),
then for the corrected scheme (91) together with (73), we have

Ly
L < , keN, 92
k+1_1+ak 92)

where Ly is defined by (74), and both the two estimates (87) and (88) hold true here.
Proof According to (82) in Lemma 3, we have established that

2
o~ o~ o
L — Ly < —a Ly + ﬁ IV £ ol2, (93)

where Ek is defined by (84). Thanks to the additional gradient step in (91), we have
the basic gradient descent inequality:

1
fOe) = fOn) < =57 IV £ Ool2, (94)

which comes from (4) since f € S ;LIL and implies that

~ 1
Liv1 < Lp— —|IV 2.
k1t = Lk — 57 IV £l
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Plugging this into (93) gives

1
Liy1 — Ly < —oy Ly + S (La;% -1+ Olk)) IV £ )l2.

This together with the condition Loe,% = (1 + o) yields (92).

As we choose the same step size as Theorem 5, based on the contraction (92), it
is trivial to conclude that the two estimates (87) and (88) hold true here indeed. This
completes the proof of this theorem. O

6 A corrected semi-implicit scheme from NAG method

In this section, we consider another semi-implicit scheme which comes exactly from
Nesterov accelerated gradient method.

6.1 NAG method

In [29, Chapter 2, General scheme of optimal method], by using the estimate sequence,
Nesterov presented an accelerated gradient method for solving (1) with f € S ;ilL
0 < u < L < o0; see Algorithm 1 below.

Algorithm 1 Nesterov Accelerated Gradient (NAG) Method
Input: xp,vp € V and yp > 0.

1: fork=0,1,...do

2:  Compute o € (0, 1) from La/% =1 —ap)y + nog.

3 Update ygy1 = (1 — ag) vk + pog.

QU Vi Vk + Vier1Xk

Vi + o .
5: Update iy such that f (1) < f (i) = 57 IV £ O

4:  Sety;, =

1 .

6:  Update vg4| = . [ = ap)yeve + o (wyr — V£ Or)]-
+

7: end for

Note that we have many choices for x4 in step 5 of Algorithm 1. One noticeable
example is the gradient descent step (see [29, Chapter 2, Constant Step Scheme, I]):

1
Xi41 = Yk — ZVf(yk)- 95)

With this choice, the sequence {vi} in Algorithm 1 can be eliminated and yi4 is
updated by that (see [29, Chapter 2, Constant Step Scheme, II])

o — oz,%
Vel = Xl + ————5 (X1 — Xk),
Ok+1 + o

@ Springer



762 H. Luo, L. Chen

where i1 € (0, 1) is calculated from the quadratic equation
2 7.2
Loy = Lo (1 — agy1) + potiy 1.
If w > 0and o9 = /10/L, then o = /u/L; see [29, Chapter 2, Constant Step

Scheme, III]. In particular, if & = 0, then Algorithm 1 (with xz4+; updated by (95))
coincides with the accelerated scheme proposed by Nesterov early in the 1980s [27].

6.2 NAG method as a corrected semi-implicit scheme

After simple calculations, we can rewrite Algorithm 1 as an equivalent form

Yi+1 — Vk

o =M — Vk,
Yk — Xk Vi
= (vk — yi)» (96)
(675 Vk+1
Vk41l — Uk 1z 1
= Ok —vk) — ——V (),
(075 Yk+1 Vk+1

where in addition we update x| satisfying

1
FOe) = fO0) = 57 IV £ i)l2. (97)

Surprisingly, (96) formulates a semi-implicit discretization for our NAG flow (56) with
a correction step (97) and an explicit discretization for the Eq. (54) of y. Similarly
to (91), we can adopt the gradient descent step which promises (97).

Based on subtle algebraic calculations of the estimate sequence, Nesterov [29,
Chapter 2] proved the convergence rate of Algorithm 1. In the following, we give an
alternative proof by using the Lyapunov function (74).

Theorem 7 Assume that f € S:LIL with) < u < L < oo. IfLot,% = Yk+1, then for

Algorithm 1, i.e., the scheme (965 together with (97), we have 0 < ay < 1 and
Liv1 < —ap)Ly, keN, (98)

where Ly is defined by (74). Consequently for all k > 0,

k
. 4L min{y, u}
L L _ 1 -y —— . 99
CS S0 ek 1 2V ( VoL ) ©9)

Moreover, forall k > 1,

k—1
] 4 min{yy, u}
Ly < Cyy 1 x min R (1 —,/T , (100)
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where Cy, 1. has been defined in (89).
Proof Let us first prove (98). By (96), we find

Yk+1
vk = Yk + —(yk — Xk),
Ok Vi

1—
Vk4l = Yk + ()’k — X)) — —Vf(yk)
Yi+1

and a direct computation gives

o o x| = B0 =) Jue— 7|
=g ((Vf(Yk),x* — )+ % % = ||2)
+ (1= a) (V00 56— ) + 5 I = wel?)

N ; (1 — o)
241 20 Yk

IV fill2 — (v + pee) vk — xell? .

Dropping the negative term — ||y — x ||> and using the y-convexity of f imply that

P =P = = a) o P

T2
2
<o (F&) = fOR) + A =) (f @) = f ) t3 IIVf(yk)ll* .
and we get the inequality
2
Lrer = (=)L = [ = fO0) + 5 |Vf<yk)||2

Consequently, by (97) and the relation Loz,% = Yk+1, the right hand side of the above
inequality is negative, which proves (98).
In this case, we modify (79) as follows

po=1 po=]]0—a) k=1, (101)

then by (98) it is clear that £ < px Lo, and invoking Lemma B1 proves (99). As the
proof of (100) is very similar with that of (88), we omit the details here and conclude
the proof of this theorem. O

Remark 4 Similar to our corrected schemes (83) and (91), NAG method (i.e., Algo-
rithm 1) generates a three-term sequence {(xi, yx, vx)} as well. If u = 0, then they
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share the same convergence rate bound

4LLy
Ly < ———F—,
(V70k +2VL)?

and when yp = u > 0, we have

(1 —/n/L)*,  for NAG method,
X

Ly <L
=0 (1 +/u/L)7*, for (91) and (83) .

(102)

In view of the trivial fact

€2

l—€e= - ,
l+e 1+4e¢€

€e=/u/L <1,

we see the rates in (102) are asymptotically the same and NAG method can achieve a
slightly better convergence rate. However, we note that they share the same computa-
tional complexity

0 (min {VL/e, VL 1nel}),

which is optimal, in the sense that [29] it achieves the complexity lower bound of
first-order algorithms for the function class & /ilL with) < u < L < oo. O

Remark 5 Unlike the gradient descent method, the function value f (x;) of accelerated
gradient methods may not decrease in each step. It is the discrete Lyapunov function
Ly that is always decreasing; see (86), (92) and (98). m|

Remark 6 To reduce the function value, one can adopt the restating strategy [31].
Specifically, given (yy, vo, x0), if f(xx) is increasing after k-iteration, then set k = 0
and restart the iteration process with another initial guess (¥, Vo, Xo). By Theorems 5,
6and 7, when f € Sé” é and Y9 = L, vgp = xg, we only have the sublinear convergence
rate

4 L
) — () < k—2<f(XO) =)+ 5 o - x*llz)s - o=

where we used (4), which promises

L 2
fo) = f&™) = 3 [xo —x*|”.
Additionally, assume f satisfies the quadratic growth condition with o > 0:
f(x) — f(x*) > odist?(x, argmin f) Vx eV,
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where dist(x, argmin f) = infyseargmin £ IXx — x*[I. As (103) holds for all x* €
argmin f, we have immediately that

4L 4L
fum—ﬂﬁnsﬁmﬁaa%mmﬂs;ﬁuam—ﬂﬁ»

Therefore, as analyzed in [30], if we consider fixed restart technique [31] every k steps,
then after N = nk steps we will get

4L \"
fly) — f(x) < (m) (f(x0) — f(x™)).

Evidently, the optimal choice k4 = e+/4L /o yields the linear rate

fOn) — fx*) < e 2Nk (f(xg) — f(x¥)).

If the parameter ¢ is unknown, one can use the adaptive restart technique [31].
When f is quadratic and convex, changing y from L to u periodically will smooth-
ing out error in different frequencies and can further optimize the constant in front
of the accelerated rate. That is, the dynamically changing parameter {y;} hopefully
outperforms the fixed one yx = . For general nonlinear convex functions, a rigorous
justification of the restart strategy is under investigation. O

7 Composite convex optimization

In this part we mainly focus on the composite optimization

mig fx) = miIQl [A(x) + gx)], (104)

where Q C V is a simple closed convex set, 1 € Slll’,lL(Q) with0 < u < L < oo and
g : V. — R U {+o0} is proper, closed and convex, and Q N dom g # @J. In general
g is not differentiable but its subdifferential dg exists as a set-valued function. More
precisely, the subdifferential dg(x) of g at x is defined by that

9g(x) :={peV*:g(y)=gx)+(p.y—x) VyeV}. (105)

Remark 7 For the case that h € S(l)’i(Q) and g is u-strongly convex with u > 0, we

can split h + g as (h(x) + %lellz) + (g(x) — %I|x||2), which reduces to our current
assumption for (104). O

We shall apply our ODE solver approach to the problem (104). The first step is to
generalize the dynamical system (56) to the current nonsmooth setting. Basically, we
set F = f 4 i with ip being the indicator function of Q and obtain a differential
inclusion for minimizing F on V, which is equivalent to minimize f over Q. After that,
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optimization methods (see Algorithms 2 and 4) for solving the original problem (104)
with the accelerated convergence rate

0 <min {L/K2, (1 + \/M/L)_k}>

are proposed from numerical discretizations of the continuous model (106). This is
a proof of the effective and usefulness of our NAG flow model (106) and the ODE
solver approach, by which we can construct new accelerated methods easily.

7.1 Continuous model

For minimizing a nonsmooth function F over V, our NAG flow (56) becomes a
differential inclusion

x'=v—ux,
, (106)
yv € ux —v) —IF(x).

To ensure solution existence, suitable initial conditions shall be imposed later. Corre-
spondingly, the second-order ODE (57) reads as a second-order differential inclusion

yx" +(u+y)x' +9F(x) 3 0. 107)
As the subdifferential d F is a set-valued maximal monotone operator, classical C 2
solution to (107) may not exist because discontinuity can occur in x’. Therefore, the
concept of energy-conserving solution has been introduced in [15,32,36].
Let us assume the initial data

x(0) =x9p e domF and x'(0) = x1 € Zgomr (X0), (108)

where Zgom r (x0) denotes the tangent cone of dom F' at xq:

Taomr (x0) := TL>JO 7(xg — domF).

In addition, we shall introduce some vector-valued functional spaces. Given any inter-
val I C R, let M(I; V) be the space of V-valued Radon measures on 7; forany m € N
and 1 < p < oo, W™ P(I; V) denotes the standard V-valued Sobolev space [21]; the
space of all V-valued functions with bounded variation is defined by BV (I; V) [4].
Also, W;:” (I; V) and BViee(I; V) consist of all the sets W7 (w; V) and BV (w; V)
respectively, where @ C I is any compact subset.

Definition 1 We call x : [0, 0c0) — V an energy-conserving solution to (107) with
initial data (108) if it satisfies the following.

1. x € Wh(0, 00; V), x(0) = xo and x(¢) € domF for all 1 > 0.
2. x" € BVie([0, 00); V), x'(0+) = x1.
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3. For almost all # > 0, there holds the energy equality:

! 3
P+ L2 ol + [ S o P i = Fuao + B R,

4. There exists some v € M (0, oo; V) such that
yx" +(u+y)x'+v=0

holds in the sense of distributions, and for any 7 > 0, we have

T
/0 (F(y(0) = Fx())dt = (v, y = X)eqo.ryvy forally € C(0, T1; V).

In [25], the problem (107) has been extended to a general case
yx" +(u+y)x' +9F(x) 3 €,
where & stands for small perturbation. Therefore, according to [25, Theorem 2.1], we

have the existence of an energy-conserving solution to (107) and by [25, Theorems
2.2 and 2.3], we obtain the exponential decay, which is a nonsmooth version of (60).

Theorem 8 Assume V is a finite dimensional Hilbert space. In the sense of Definition 1,
the differential inclusion (107) admits an energy-conserving solution x : [0, 0c0) — V
satisfying

F(n) - F(x*) + % Jx@) +x'() = x*|* < 2Lpe" (109)

for almost all t > 0, where Ly := F(xo) — F(x*) + % llxo + x1 — x*||%.

Remark 8 1f additionally domF = V, then x € WIZO’COO(O, oo; V)N Cl([O, 00); V)
and (109) holds for all # > 0. O

7.2 An APGM for unconstrained optimization

Let us first consider the unconstrained case Q =V, i.e.,

min f(x) := min [A(x) + g(x)]. (110)

where f € SllllL withO <u <L <ooand g:V — RU {+o00} is a properly closed
and convex function and possibly nonsmooth.
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7.2.1 Gradient mapping

To treat the nonsmooth part g, we introduce the tool of gradient mapping. Following
[29, Chapter 2], given any 1 > 0, the composite gradient mapping G r(x, n) of f at x
is defined by that

x—=S8¢(x,m)

Grx,n) = eV, (111)

where S¢(x, n) := prox,, (x —nVh(x)) and the proximal operator prox,, has been
defined by (8). Note that Sy (x, n) is clearly well-defined and so is G ¢ (x, 1).
It is well known [33,35] that

X ProX,e (0 9 (prox,, (x)), (112)

which yields the fact

Gr(x,m) — Vh(x) € 9g(Sy(x, ). (113)

From this we conclude that the fixed-point set of S¢(-, 1) is argmin f. Indeed, x =
Sy¢(x,n) if and only if 0 € 9 f(x). We also observe from (113) that the gradient
mapping (111) is defined reversely from the proximal-gradient step for minimizing
f=h+g,ie,

Spbem —x —Vh(x) —9g(Sy(x, m)

= _gf(xs 77)

Hence it plays the role of the gradient V f in the smooth case. Particularly, if g = 0,
then Gr(x, n) = Vh(x) and Sy (x, n) = x —nVh(x) is nothing but a gradient step.

To move on, we present an auxiliary lemma, which is a key ingredient for our
convergence analysis. As we will fix n = 1/L, for simplicity, we set Gr(x) :=
Gr(x,1/L)and Sf(x) := Sy(x, 1/L).

Lemma4 Assume f = h + g, where h € SIL]L with0 <u <L <ocoandg:V —
R U {400} is properly closed and convex. Then for any x,y € V,

1
FO) = FSpe) +(Gr )y —2)+ S lly =xIP + 27 [G,@[*. (14)

Proof Since h € S /ilL applying (2) and (4) gives
M 2
h(x) = h(y) + (Vh(x),y —=x) = = x =y,

L 2
h(Sf(x)) —h(x) + (Vh(x),x — S (x)) < 5 [Sre0) —x|”,
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which implies that

h(y) = h(Sg(x, ) + (VA(x),y = Sf(x)) + % ly —xI* - i Hgf(X)Hz-
Observing (113), we get
8() = g(Sy(x) + (G (x) = Va(x), y = Sp(x)).
Summing the above two inequalities and using the split

(Grx).y = Sr) =(Gr(x), y — x)+(Gr(x), x — Sy (x))
2

1
=(Gr@),y —x)+ 7 |9,

we finally arrive at (114) and end the proof of this lemma. O

Remark 9 For a fixed x, the right hand side of (114) defines a quadratic approximation
of f at x, and it is strongly reminiscent of the quadratic lower bound approximation
(2) for the smooth case. However, compared to (2), the constant is shifted from f (x)
to alower value f(Sy(x))+ ﬁ || Gr(x) Hz The first order part is G ¢ (x) instead of the
subgradient at x. The quadratic part % ly — x||? is due to the u-convexity. O

7.2.2 The proposed method

Based on the corrected semi-implicit scheme (91) for NAG flow (56), it is possible to
generalize it to solve the differential inclusion (106). We simply replace the gradient
V f (yx) with the gradient mapping G (yx) and set the correction as xg 1 = Sr(yk).
More precisely, consider

Yk — Xk
= Vk — Yk,
ay
X1 = Sr(ye)s
Uk+1 — Uk 2 1 (115)
= = D —u) — =GO,
0773 Yk Yk
Y+l — Yk
e = U Vit
ok

Once xpy1 = Sr(O) = prox,, (yk — nVh(yx)) is obtained, we can update vi41
with known datum xi, yx, vx and xx41. Thus in each iteration, (115) only calls the

proximal operation prox, , once.

We still use the step size La,% = Y (1 + o) and summarize the semi-implicit
scheme (115) in Algorithm 2, which is called semi-implicit APGM (Semi-APGM for
short). Also, the convergence rate is derived via the discrete Lyapunov function (74).
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Algorithm 2 Semi-APGM for solving min,cy [A(x) 4+ g(x)]
Input: xg,v90 €V, yo>0andn=1/L.

1: fork=0,1,...do

2:  Compute o > 0 such that Loz,% = v (1 + ag).
Ykt Hag

3:  Update = .

p Vi+1 1 +az
4 Setyk:mandwk:w_
14 o Yk + nog

5 Update xg41 = prox, ¢ (yk — nVh(yr)).

6: Setvk+]:wk+iw.

7 Vk+1 293

: end for

Theorem 9 For Algorithm 2, we have

L <
k= 14 oy

Vk eN, (116)

where Ly = f(xx) — f(x*) + % lug — x* ||2, and both (87) and (88) hold true here.

Proof The proof of (116) is very similar to that of (92). Replacing xj and its gradient
V f (xx+1) in (80) respectively with y; and G ¢(yx), we can proceed as the proof of
Lemma 3 and use Lemma 4 to obtain

L — Lix < — oLy + (1 +a) (FOr) — f(xr1))
(117

14 oy
2L

2
ok 2 2
+ e G s 1Gro0|” .

where Ek is defined by (84). Thanks to the relation Lo{,% = Y (1 4+ o), the second

line of (117) vanishes, and inserting the identity f(yx) — f (xk+1) = Lr — Li+1 into
(117) gives (116). Based on this, it is not hard to see that both (87) and (88) hold true.
This finishes the proof of this theorem. O

We mention that with another choice
2 _ 2
Loi = paj + (1 4+ ap),

we can drop the sequence {vi} from (115). The procedure is not straightforward but
very similar to that of Nesterov’s optimal method in [29, page 80]. We omit the details
and only list the following algorithm.
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Algorithm 3 Simplified Semi-APGM

Input: xg,y0 €V, yo>0andn=1/L.

l: fork=0,1,...do

2:  Compute a > 0 such that Lo:]% = ;wt,% + Ve (1 4+ o).
Vi + nay

_ Loy
oy and set By = Ve (e

3

4 Set ygqq = Xk + B (k1 — Xp)-
5: Update xg41 = prox, o (vk — nVh(yr))-
6: end for

Update y41 =

This can be viewed as a generalization of [29, Chapter 2, Constant Step Scheme,
II] to problem (110). Particularly, for convex case u = 0, it is very close to FISTA
[12]. Both of them share the same spirit: applying one proximal gradient step first
and then using some extrapolation formulae. The difference comes only from the use
of the two sequences {o} and {Bi}. We also claim that Algorithm 3 has the same
accelerated convergence rate as Algorithm 2, i.e., O (min(L /kz, 1+ M)_k)). In
contrast FISTA is designed for . = 0 and has only the sublinear rate O (L/ k2).

We mention that, accelerated proximal gradient methods for solving (110) with
only one evaluation of prox,,, in each iteration can be found in [38] (only for strongly
convex case) and [24, Chapter 2, Algorithm 2.2] (for both convex and strongly convex
cases).

Both Algorithms 2 and 3 cannot be applied directly to the general constraint
case (104). The main issue comes from the definition (111) of the gradient map-
ping Gr(x, n), where we impose the restriction x € Q and calculate the proximal
operator prox, , over O to obtain Sy (x) € Q. For both two algorithms, we shall com-
pute xx 1 = Syr(yx) = prox, . (yk —nVh(yx)). But the sequence {yx} in Algorithms 2
and 3 may be outside the constraint set. This is not acceptable because Vi (y;) might
not exist: for instance, Q = [0, 0o) and 4 is the entropy function.

The original FISTA [12] and the methods in [38] and [24, Chapter 2, Algorithm
2.2] mentioned above, cannot be applied to the constrained problem (104) either. This
stimulates us to propose a new operator splitting scheme to conquer this problem.

7.3 An accelerated forward-backward method for constrained optimization

We now go back to the constrained problem (104). As mentioned above, the tool of
gradient mapping is not convenient for us to handle this case. To avoid using it, we
utilize the separable structure of f = h + g and apply explicit and implicit schemes
for i and g, respectively. This is the so-called operator splitting technique in ODE
solvers and is also known as the forward-backward method.
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Let us start from the predictor-corrector scheme (83) and rewrite it as follows

W= X + o vk wi = Yk Vk + L Vi
1+ Vi + ok
. Yk + pa
Ukl = argmln{(Vf(yk), v+ T v - wk||2} ; (118)
vev Ok
Xk + O V41
Xke+1 = W

For minimizing f = h + g over O, we modify the above method as follows

ykzxk +05kvk’ = Yk Uk + WOk Yk
14+ o Vi + o
Vk4+1 = argmin {g(v) + (Vh(yr), v) + w lv — wk||2} s (119)
veQ Zozk
il = Xk + Ok V+1
14+ ok

where xo, vp € Q and the parameter sequence {yx} comes from the implicit discretiza-
tion (73) of the Eq. (54). Clearly, as convex combinations are used, the method (119)
preserves the three-term sequence {(xx, Yk, vx)} in Q and it requires the proximal
computation of g over Q only once in each iteration.

We choose Loz,% = Yk (1 4+ ax) as before and rewrite (119) in Algorithm 4, which
is called semi-implicit accelerated forward-backward (Semi-AFB for short) method.

Algorithm 4 Semi-AFB method for solving minyep [2(x) + g(x)]

Input: xg,vg € Q, y9p >0and L > 0.
l: fork=0,1,...do
2:  Compute > 0 such that Loz]% = k(1 + ag).

Yk + o
3: Update = .
P! Yk+1 1+ oy
4 Sety, = X+ vk and wy = Yk Uk MYk
I +oy Yk + oy

5:  Update vg41 = argmin { g(v) + (VA(yx), v) +
veQ
X + Vg1

1+ o

Vi + ok 2
—— llv —wgl" .
20

6:  Update x; 41 =
7: end for

In [41], Tseng considered problem (104) only with convex assumption, i.e., u = 0,
and proposed an APGM that possesses the rate O(L /k?). By using the technique of
estimate sequence, Nesterov [28] presented an accelerated method for solving (104)
with the assumption that 4 is L-smooth over Q and g is pu-strongly convex with
© > 0. Both our Algorithm 4 and Nesterov’s method generate a three-term sequence
{(xk, Yk, vr)} and have the same accelerated rate O(min(L/kz, (1+ M)’k)); see
[28, Theorem 6] and our Theorem 10. However, as mentioned in [12], the later used an
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accumulated history of the past iterations to build recursively a sequence of estimate
functions, and in each iteration, to update x;4+1 and vg41, Nesterov’s method in [28]
calls prox, over Q twice.

Below, we shall establish the convergence rate of Algorithm 4 via the analysis of
a Lyapunov function. It is well known [28, Eq (2.9)] that the first-order optimality
condition for vg41 in (119) is the variational inequality

Yk + ok

<Vh(yk) + (Vk+1 — Wk) + pr+1, X — Uk+1> >0 VxeQ,

where pr4+1 € 0g(vi+1). Expanding wy, we observe the relation

Vi (k41 — Vk, Vkg1 — X)
< motg (Vi — Va1, Vi1 — X) — ax (VR(Yk) + Prt1s Vkgp1 — X)), (120)

where x € Q is arbitrary.

Theorem 10 For Algorithm 4, we have

Ly
L < VkeN, 121
LS T € (121)

Qg
where Ly = f(xg) — f(x*) + % log — x* ||2, and both (87) and (88) hold true here.
Proof As before, we calculate the difference
Lir1 = L =f (1) = f () + “—2"<u = ¥er) o — x|
+ Vi (Vk1 — Ve Vg1 — x¥) — % loksr — il
Thanks to (120), we have

Vi (Vks1 — vk, i1 — x¥)

< pag (Ve — k1o Ukt — X*) — o (VROW) + prg1, veer — %), (122)

where pry1 € 9g(Vk+1).
By Lemma 1, the first term in (122) is split as follows

2uaty (Vi — Vi1, Ukl — x¥)

2 2
= pay (Hyk — ¥ = lyk = vert 117 = Jorsr — x| ) .
The gradient term in (122) is more subtle. Firstly, by convexity of g, we have

— ap (P, Vi1 — XF) < = (g(Wrg1) — 8(x))

= —a (g(xrg1) — 8(x™) — i (g(vk41) — §xk1))
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and secondly, according to the update for yi (see step 4 in Algorithm 4), we find

— i (Vh(w), vig1 — x¥)
= —a (VR vir1 — vi) — o (VA(R), v — x¥)
= —ax (VA1) viy1 — vi) — (VR(w), vk — xx) — o (VA ye — x¥).

As h is p-strongly convex on Q, by the fact {(x, yx, vk)} C Q, it follows that
— (Vh(y), yk — k) — o (Vh(i), ye — x¥)
" 157" 2
< o) = () = 5 v = el = e () = A () = == " = x|
* o * 2
= (1 + ) (h(x1) — h() — g (h(xg1) — h(x™)) — — ||x* — w||

"
+ k) = hxe) = 3 ok — yell* .

Therefore, collecting all the estimates and dropping surplus negative terms related to
— Il = yell? and —|lyk — ves111%, we get

L1 — Ly
< —axLig1 + (L4 ag) (h(xgp) — h(e)) — ok (VR(k), i1 — vi)

- % lverr — vill? + gGos1) — (k) — ok (g(Weg1) — (1)) . (123)

Let us consider the additional terms in (123). In view of (4), we have

L
h(xies1) = h(e) < (VRO X = yi) + 5 Ik = el
Thanks to the extrapolation step for x4 (see step 6 in Algorithm 4), we find a crucial
relation

1073
1+ oy

Xk+1 — Yk = (Vk+1 — Vi),

which gives that

(I +ap) (h(xpp1) — h(yr)) — ok (VR(E), Vi1 — vg) — % [Er—

Lo?
k 2 Yk 2
< — F |lv — v — — |lv — v — O’
= 2(1 k) ” k+1 k” ) ” k+1 k” =

as Loe,% = Y (1 + ax). Moreover, since x4 is a convex combination of x; and viy1,
the estimate follows

8(xk11) — g(xg) — a (g(vkr1) — g(xk11))
= (1 4+ ap)gxp+1) — glxx) — o g(vr+1) < 0.
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Plugging this and the previous inequality into (123) gives
Lit1 — Lk < —o L1,

which establishes (121).
By the relation Lo:,% = 1% (1 + a¢) and the contraction (121), it is clear that the two
estimates (87) and (88) hold true. This completes the proof of this theorem. O
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A Spectral analysis
Proof of Theorem 1 Let us start from the scalar case
—a ¢
&= (3 %)

where a,b,c,d > 0and tr R < 0 < det R. Set

—a 0 0c
v (G 5) = (00)
By direct computations we have

1+da ca(l+da)

1
— 1 —
E(,R):=(I —aM) (I+aN)_8< ba 1+a bea?

), (124)

where § := (1 + aa)(1 + da). Since tr R < 0, we see that

1 1
O<detE(ax,R) = - = <1
8§ 14 |trR|o+ ada?

Note that any eigenvalue 6 of E (o, R) satisfies
0> —tr E(, R)0 + det E(a, R) = 0. (125)

We now arrive at the following lemma, which says the spectrum of E(«, R) can be
transformed to the circle |0| = y/det E(«, R) < 1, with proper «. O
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Lemma5 Assume

—a ¢
&= (3 %)
with a,b,c,d > 0 such that tr R < 0 < det R. Let E(a, R) be defined by (124). If
o > 0 satisfies

[tr R| —2+vdetR < bca < |tr R| + 2+ det R, (126)
then we have
1
p(E(a, R)) = <L

V1+|tr Rl + ada?

Proof If A = |tr E(«, R)|2 — 4det E(a, R) < 0, then any solution to (125) satisfies
that |0| = 4/det E(a, R) and the conclusion follows. By direct calculation, A < 0 is
equivalent to

Vo —1<avdetR <5 +1.

Square the inequality a+/det R — 1 < /8 and cancel one « to get the upper bound in
(126). The lower bound can be proved similarly. O

We now in the position of establishing Theorem 1. We first consider G = G, for
which we have

Ela.G) = | ((1+2a)[ a(1+2a)1>-

1420 \ —aA/u I —Ad?/p

Itis clear that & € o (E(«, G)) < 0 € o (E (o, R(1))), where E(«, R(A)) is defined
by (124) with

R\ = (_S/M _12> A€ o(A).

As [tr R(A)| < 24/det R()), by Lemma 5, if

0 <a=<2/y/k(A), (127)
then we can obtain
(E(a, G)) (E(a, R(A))) !
o, = max o, = —.
p Aea(A)p V142
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Similarly, for G = G, with condition (127), we can establish

1 1
< )
Vi42a+a?2 T V142

p(E(a, G)) = max p(E(x, R(1))) =
rea(A)

Consequently, for both two cases, taking « = 2//k (A) yields the spectrum bound

1 1
PE@G) = = S T+ @

This concludes the proof of Theorem 1. O
Proof of Theorem 2 Observe that Ek is similar with

-1
I O I O H
E(oi, G = ,

where

H — 1 ol
=\ —Aa/m I—Ao}/ve)”

To prove (51), it is sufficient to verify p (Hy) = 1.
Given any eigenvalue 6 € o (Hjy), it solves

0% + (a}/vk —2)0 +1=0,

with some A € o(A) C [0, L]. By (49), {yx} is decreasing and thus y; < yp = L.
According to our choice La,% = v (1 4+ o), we have 0 < o < 2 and moreover
0 < 2a?/yk < Lo /yk = 1 4+ a < 3. This implies A = (Aa?/yx —2)? —4 < 0 for
all A € o(A). Therefore, we conclude that |#| = 1 for all & € o (Hy), which proves
p (H) = 1 and thus establishes (51).

Thanks to Lemma B2, there holds

k—1
1 - Ve _ 1—[ 1 - 4 .
k+1D> "y  Lol+a = (k+2)?
This proves (52) and completes the proof of Theorem 2. O

B Decay rates

LemmaB1 Letyy > Oand u > 0 be given and assume there is a real positive sequence
{Ly} such that Ly > . Define {(a, yr)} by that

(128)

Lyaf = yir1, g >0,
Vir1 = (1 — o) i + pog.
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Then we have vy > 0,0 < o < land oy > /min{yy, u}/L, where L := sup;cy L.
Moreover, forall k > 1,

k—1
10 —a) < min 4(2+Z\/%) ( ,/mm{zl ‘”) . (129)
=0 =0

and if u = 0, then we have the lower bound

k—1 k—1 7 -2
1—a) > |1+ —| - 130
E)( o) ( g\/;) (130)

Proof Let us first check that 0 < o < 1 and y; > 0. Since yp > 0, by (128) we have
Loag = y1 = (1 —a)yo + poo,

from which we claim that 0 < 9 < 1. Thus by the second step in (128) we have
y1 > 0. A sequential argument implies that 0 < ax < 1 and y; > 0 for all k > 0.

It is not hard to find the fact: if yp > u, then u < yr4+1 < yx and if yy < w, then
Yk < Vk+1 < . Particularly, if y9 = u, then y, = p. Based on this observation and
the fact Ly < L, we conclude that oy > /min{y;, }/L and thus

k2l mingy. o]\
ll:([)(l—ai>s(1—,/—f’“>

Next, let us prove the estimate

k—1 -2
Pk§4<2+z /?) : (131)
i=0 ' !

where py is defined by (101). We start from the trivial equality

L b k=1 =T = Qg
PFL Pk A/ Pk Pic+1 N Pr+1 P+ VT —=ap)’

(132)
where we used the relation pg+1 = pr(1 — o). By (128), for any i > 0, it holds that

Vie1 = (1 —a)yi + poi > (1 — o)y, (133)
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and multiplying the above inequality from i = 0 toi = k — 1 gives pr < ¥/»0o-
Plugging this into (132) and using the relation Lkoz,% = Yx+1 and the fact 0 < o < 1
imply

L S Yook AL
VPirl Pk i+ VT =) ~ 2JLk

which further indicates that

k—1
Lo L.y n
NN/ VP

Therefore, a simple calculation proves (131) and concludes the proof of this lemma.
For u = 0, we have the relation p; = yx/y0, and proceeding as the above derivation,
itis not hard to establish the lower bound (130). This concludes the proof of this lemma.
O

Similarly, we can establish the following result, the proof of which is omitted for
simplicity.

LemmaB2 Letyy > Oand u > 0 be given and assume there is a real positive sequence
{Lk} such that Ly > w. Define {(ak, vi)} by that

Vi1 = Yk + o (L — Vit1)s
Lea} = ye(1 + o), ag > 0.

Then we have yi > 0 and oy > /min{yy, u}/L, where L := sup;y Lr. Moreover,
forallk > 1,

k—1 k—1 -2 —k
1 Y0 ! [min{yo, u}
<min (4|2 — , _— )
1_[ T S min + ZZ(; L + 7

i=0

and if u = 0, then we have the lower bound

k—1

[T

1 - [vo -
> |1 — .
; 1+ai_<+z Li)
=0 i=0
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