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Abstract
Convergence analysis of accelerated first-ordermethods for convex optimization prob-
lems are developed from the point of view of ordinary differential equation solvers. A
new dynamical system, called Nesterov accelerated gradient (NAG) flow, is derived
from the connection between acceleration mechanism and A-stability of ODE solvers,
and the exponential decay of a tailored Lyapunov function along with the solution tra-
jectory is proved. Numerical discretizations of NAG flow are then considered and
convergence rates are established via a discrete Lyapunov function. The proposed
differential equation solver approach can not only cover existing accelerated meth-
ods, such as FISTA, Güler’s proximal algorithm and Nesterov’s accelerated gradient
method, but also produce new algorithms for composite convex optimization that pos-
sess accelerated convergence rates. Both the convex and the strongly convex cases are
handled in a unified way in our approach.
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736 H. Luo, L. Chen

1 Introduction

We consider iterative methods for solving the unconstrained minimization problem

min
x∈V f (x), (1)

where V is a Hilbert space, and f : V → R ∪ {+∞} is a properly closed convex
function. We shall first consider smooth f on the entire space V and later focus on the
composite case f = h + g where both h (smooth) and g (non-smooth) are convex on
some (simple) closed convex set Q ⊆ V . We are mainly interested in the development
and analysis of accelerated first-order methods.

Suppose V is equippedwith the inner product (·, ·) and the correspondingly induced
norm ‖·‖. We use 〈·, ·〉 to denote the duality pair between V ∗ and V , where V ∗ is the
continuous dual space of V and is endowed with the conventional dual norm ‖·‖∗.
For any interval I ⊆ R, denote by Ck(I ; V ) the space of all k-times continuous
differentiable V -valued functions on I , and the superscript k is dropped when k = 0.
Let Ω ⊆ V be some closed convex subset, we say f ∈ S1

μ(Ω) if it is continuous
differentiable on Ω and there exists μ ≥ 0 such that

f (x) − f (y) − 〈∇ f (y), x − y〉 ≥ μ

2
‖x − y‖2 ∀ x, y ∈ Ω. (2)

We call (2) the μ-convexity of f and when μ > 0, we say f is strongly convex. We
also write f ∈ S1,1

μ,L(Ω) if f ∈ S1
μ(Ω) and ∇ f is Lipschitz continuous on Ω: there

exists 0 < L < ∞ such that

‖∇ f (x) − ∇ f (y)‖∗ ≤ L‖x − y‖ ∀ x, y ∈ Ω. (3)

By [29, Theorem 2.1.5], this implies the inequality

f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ L

2
‖x − y‖2 ∀ x, y ∈ Ω. (4)

For Ω = V , we shall write S1
μ(Ω) and S1,1

μ,L(Ω) as S1
μ and S1,1

μ,L , respectively.
The above functional classes are what we work with in this paper. As for the opti-

mization problem (1), we also care about the global minimizer(s) of f . For strongly
convex case, it is well-known that the minimizer exists uniquely. However, for con-
vex case, to promise the existence of minimizers, additional assumption, such as the
coercivity condition, is usually imposed. Throughout, we denote by argmin f the set
of global minimizers of (1) and assume it is nonempty.

One approach to derive the gradient descent (GD)method is discretizing an ordinary
differential equation (ODE), i.e., the so-called gradient flow:

x ′(t) = −∇ f (x(t)), t > 0. (5)

Here we introduce an artificial time variable t and x ′ is the derivative taken with
respect to t . For ease of notation, in the sequel, we shall omit t when no confusion
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From differential equation solvers to accelerated… 737

arises. The simplest forward (explicit) Euler method with step size ηk > 0 leads to
the GD method

xk+1 = xk − ηk∇ f (xk).

In the terminology of numerical analysis, it is well-known that this method is condi-
tionally A-stable (cf. Sect. 2), and for f ∈ S1,1

μ,L with 0 ≤ μ ≤ L < ∞, the step size
ηk = 1/L is allowed to get the rate (see [29, Chapter 2])

O
(
min

{
L/k, (1 + μ/L)−k}) . (6)

One can also consider the backward (implicit) Euler method

xk+1 = xk − ηk∇ f (xk+1), (7)

which is unconditionally A-stable (cf. Sect. 2) and coincides with the well-known
proximal point algorithm (PPA) [33]

xk+1 = proxηk f (xk) := argmin
y∈V

(
f (y) + 1

2ηk
‖y − xk‖2

)
. (8)

Note that this method allows f to be nonsmooth and possesses linear convergence
rate even for convex functions, as long as ηk ≥ η > 0 for all k > 0.

1.1 Main results

Let us start from the quadratic objective f (x) = 1
2 x

�Ax over Rd , for which the
gradient flow (5) reads simply as

x ′ = −Ax, (9)

where A is symmetric positive semi-definite and makes f ∈ S1,1
μ,L . Instead of solving

(9), we turn to a general linear ODE system

y′ = Gy. (10)

Briefly speaking, our main idea is to seek such a system (10) with some asymmetric
block matrix G that transforms the spectrum of A from the real line to the complex
plane and reduces the condition number from κ(A) = L/μ to κ(G) = O(

√
L/μ).

Afterwards, accelerated gradient methods may be constructed from A-stable methods
for solving (10) with a significant larger step size and consequently improve the con-
traction rate from O((1 − μ/L)k) to O((1 − √

μ/L)k). Furthermore, to handle the
convex case μ = 0, we combine the transformation idea with suitable time scaling
technique; for more details, we refer to Sect. 2.
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738 H. Luo, L. Chen

One successful and important transformation is given below

G =
( −I I

μ/γ − A/γ −μ/γ I

)
, (11)

where the built-in scaling factor γ is positive and satisfies

γ ′ = μ − γ, γ (0) = γ0 > 0. (12)

Based on this, for general f ∈ S1
μ with μ ≥ 0, we replace A in (11) with ∇ f and

write y = (x, v) to obtain a first-order dynamical system:

⎧⎨
⎩
x ′ = v − x,

v′ = μ

γ
(x − v) − 1

γ
∇ f (x).

(13)

Eliminating v, we arrive at a second-order ODE of x :

γ x ′′ + (μ + γ ) x ′ + ∇ f (x) = 0, (14)

which is actually a heavy ball model (cf. (21)) with variable damping coefficients in
front of x ′′ and x ′. Thanks to the scaling factor γ , we can handle both the convex case
(μ = 0) and the strongly convex case (μ > 0) in a unified way. Moreover, we shall
prove the exponential decay property

L(t) ≤ e−tL(0), t > 0, (15)

for a tailored Lyapunov function

L(t) = f (x(t)) − f (x∗) + γ (t)

2

∥∥v(t) − x∗∥∥2 , t > 0, (16)

where x∗ ∈ argmin f is a global minimizer of f .
Accelerated gradient methods based on numerical discretizations of the dynamical

system (13) with f ∈ S1,1
μ,L are then considered and analyzed by means of a discrete

version of the Lyapunov function (16). It will be shown that the implicit scheme (see
(72)) possesses linear convergence rate as long as the time step size is uniformly
bounded below. This matches the exponential decay rate (15) in the continuous level.
Also, for convex caseμ = 0, this implicit method amounts to an accelerated PPA, that
is very close to Güler’s PPA [20] and enjoys the same rate O(1/k2) (cf. Theorem 4).
In Sect. 5, for semi-implicit schemes with suitable corrections (either an extrapolation
or a gradient step), we prove the following convergence rate

O
(
min

{
L/k2, (1 +√μ/L)−k}) , (17)
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From differential equation solvers to accelerated… 739

which is optimal in the sense of [29]. Moreover, we can recover Nesterov’s optimal
method [27,29] exactly from a semi-implicit scheme with a gradient descent correc-
tion; see Sect. 6. Therefore, instead of using estimate sequence, our ODE approach
provides an alternative derivation of Nesterov’s method and hopefully more intuitive
for understanding the acceleration mechanism. From this point of view, we name
both (13) and (14) as Nesterov accelerated gradient (NAG) flow.

As a proof of concepts, we also generalize our NAG flow to the composite case

min
x∈Q f (x) := min

x∈Q [h(x) + g(x)] , (18)

where Q ⊆ V is a (simple) closed convex set, h ∈ S1,1
μ,L(Q) with 0 ≤ μ ≤ L < ∞

and g : V → R ∪ {+∞} is proper, closed, and convex. We use dom g to denote
the effective domain of g and assume that Q ∩ dom g �= ∅. Treating (18) as an
unconstrained minimization of F = f + iQ where iQ denotes the indicator function
of Q, the generalized version of (14) is a second-order differential inclusion

γ x ′′ + (μ + γ ) x ′ + ∂F(x) � 0. (19)

We shall give the existence of the solution to (19) in proper sense and then obtain the
exponential decay (15) for almost all t > 0.

For the unconstrained case Q = V , by using the tool of composite gradientmapping
[29, Chapter 2], a semi-implicit scheme with correction for the generalized NAG
flow (19) is presented and leads to an accelerated proximal gradient method (APGM);
see Algorithm 2. We also give a simplified variant that is closely related to FISTA
[12]. For the constrained problem (18), an accelerated forward-backward method is
proposed in Algorithm 4. Both two algorithms call the proximal operation of g (over
Q) only once in each iteration, and they are proved to share the same accelerated
convergence rate (17).

The rest of this paper is organized as follows. In the continuing of the introduction,
we will review some existing works devoting to the accelerated gradient methods from
the ODE point of view. Next, in Sect. 2, we shall explain the acceleration mechanism
from A-stability theory of ODE solvers and derive our NAG flow as well. Then in
Sect. 3 we focus on the NAG flow and prove its exponential decay. After that, acceler-
ated gradient methods based on numerical discretizations of NAG flow are proposed
and analyzed in Sects. 4, 5 and 6. Finally, in Sect. 7, we extend the our NAG flow to
composite optimization and propose two new accelerated methods with convergence
analysis.

1.2 Related works

The well-known momentum method can be traced back to the 1960s. In [34], Polyak
studied the heavy ball (HB) method

xk+1 = xk − α∇ f (xk) + β(xk − xk−1) (20)
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740 H. Luo, L. Chen

and its continuous analogue, the heavy ball dynamical system:

x ′′ + α1x
′ + α2∇ f (x) = 0. (21)

Local linear convergence results for (20) via spectrum analysis were established in
[34, Theorem 9]. Note that the HB method (20) adds a momentum term up to the
gradient step and is sensitive to its parameters. For f ∈ S1,1

μ,L , it shares the same
theoretical convergence rate (6) as the gradient descentmethod; see [18,40]. To our best
knowledge, no work has established the global accelerated rate (17) for the original
HB method (20). Recently, Nguyen et al. [26] developed the so-called accelerated
residual method which combines (20) with an extra gradient descent step:

⎧⎨
⎩

yk = xk − α∇ f (xk) + β(xk − xk−1),

xk+1 = yk − α

β + 1
∇ f (yk).

Numerically, they verified the efficiency and usefulness of this method with a restart
strategy. We refer to [1,3,11,19] for further investigations of the HB system (21).

To understand an accelerated gradient method with the rate O(1/k2) proposed by
Nesterov [27], Su, Boyd and Candès [37] derived the following second-order ODE

x ′′ + α

t
x ′ + ∇ f (x) = 0, t > 0, (22)

where α > 0 and f ∈ S1,1
0,L . If α ≥ 3 or 1 < α < 3 and ( f − f (x∗))(α−1)/2 is

convex, they proved the decay rate O(t−2). If α ≥ 3 and f is strongly convex, they
also obtained a faster rate O(t−2α/3). Later on, Aujol and Dossal [10] established a
generic result:

f (x(t)) − f (x∗) ≤
{
Ct−2, if α ≥ 2β + 1,

Ct−2α/(2β+1), if 0 < α < 2β + 1,
(23)

where β > 0 and ( f − f (x∗))β is convex. Almost at the same time, Attouch et al.
[8] obtained the estimate (23) for β = 1 and considered numerical discretizations
for (22) with the convergence rate O(k−min{2,2α/3}). Also, Vassilis et al. [42] studied
the non-smooth version of (22):

x ′′ + α

t
x ′ + ∂ f (x) � 0. (24)

They proved that the solution trajectory of (24) converges to a minimizer of f and
derived the decay estimate (23) for β = 1. For more works and generalizations related
to the model (22) and the corresponding algorithms, we refer to [2,5–7,14] and refer-
ences therein.
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From differential equation solvers to accelerated… 741

Recently, Wibisono et al. [43] introduced a Lagrangian

E(y, w, t) = e
∫ t
0 α(s) ds

α(t)β(t)

(
β(t)

2
‖w‖2 − α2(t) f (y)

)
, (25)

for smooth and convex f , where α : R+ → R+ is continuous and β : R+ → R+
satisfies

β ′ ≥ −αβ, β(0) = β0 > 0. (26)

The Lagrangian (25) itself introduces a variational problem, the Euler–Lagrange equa-
tion to which is

{
y′ = α(w − y),

βw′ = −α∇ f (y).
(27)

They then established the convergence rate (cf. [43, Theorem 2.1])

f (y(t)) − f (x∗) ≤ e− ∫ t0 α(s) dsL(0), (28)

by means of the Lyapunov function

L(t) = e
∫ t
0 α(s) ds[ f (y(t)) − f (x∗)

]+ 1

2

∥∥w(t) − x∗∥∥2 .

Following this work, for f ∈ S1
μ with μ > 0, Wilson et al. [44] introduced another

Lagrangian whose Euler–Lagrange equations reads as

{
y′ = α(w − y),

μw′ = μα(y − w) − α∇ f (y),
(29)

with the same scaling function α in (25). They proved the decay estimate (28) as well,
by using the Lyapunov function

L(t) = e
∫ t
0 α(s) ds

[
f (y(t)) − f (x∗) + μ

2

∥∥w(t) − x∗∥∥2] . (30)

When α = √
μ, (29) gives the following model

y′′ + 2
√

μy′ + ∇ f (y) = 0, (31)

which reduces to an HB system (cf. (21)); see also Siegel [38].
In addition, Siegel [38] and Wilson et al. [44] proposed two semi-explicit schemes

for (31) individually. Both of their schemes are supplemented with an extra gradient
descent step and share the same linear convergence rate O((1 − √

μ/L)k).
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742 H. Luo, L. Chen

Recently, introducing the so-called duality gapwhich is the difference of appropriate
upper and lower bound approximations for the objective function, Diakonikolas and
Orecchia [17] presented a general framework for the construction and analysis of
continuous time dynamical systems and the corresponding numerical discretizations.
They recovered several existing ODE models such as the gradient flow (5), the mirror
descent dynamic system and its accelerated version. We mention that the derivation
of our NAG flow and analyses of discrete algorithms are fundamentally different from
their duality gap technique.

2 Stability of ODE solvers and acceleration

Inwhat follows, for anyM ∈ R
d×d ,σ(M) denotes the spectrumofM , i.e., the set of all

eigenvalues of M . The spectral radius is then defined by ρ(M) := maxλ∈σ(M) |λ|, and
when M is invertible, its condition number κ(M) := ρ(M−1)ρ(M). If σ(M) ⊂ R,
then λmin(M) and λmax(M) stand for the minimum and maximum of σ(M), respec-
tively. Moreover, ‖·‖2 is the usual 2-norm for vectors and matrices.

To present our main idea as simple as possible, in this section, unless other spec-
ified, we restrict ourselves to the quadratic objective f (x) = 1

2 x
�Ax , where A is a

symmetric matrix with the bound

0 ≤ μ := λmin(A) ≤ λ ≤ λmax(A) := L ∀ λ ∈ σ(A).

For this model example, ∇ f (x) = Ax and the gradient flow (5) reads as x ′ = −Ax .
The global minimal is achieved at x∗ = 0, and when μ > 0, the condition number of
A is κ(A) = L/μ.

2.1 A-stability of ODE solvers

Let G ∈ R
d×d and assume Re(λ) < 0 for all λ ∈ σ(G). For the linear ODE system

y′ = Gy, y(0) = y0 ∈ R
d , (32)

it is not hard to derive that ‖y(t)‖2 → 0 as t → ∞ (see [13, Theorem 7] for instance).
Hence y∗ = 0 is an equilibrium of the dynamic system (32).

We now recall the concept of A-stability of ODE solves [23,39]. A one-step method
φ for (32) with step size α > 0 can be formally written as

yk+1 = Eφ(α,G)yk . (33)

As y∗ = 0 is an equilibrium point, (33) also gives the error equation. The scheme φ

is called absolute stable or A-stable if ρ(Eφ(α,G)) < 1 from which the asymptotic
convergence yk → 0 follows (cf. [16, Theorem 6.1]). If ρ(Eφ(α,G)) < 1 holds for
all α > 0, then it is called unconditionally A-stable, and if ρ(Eφ(α,G)) < 1 for
any α ∈ I , where I is an interval of the positive half line, then the scheme is called
conditionally A-stable.
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From differential equation solvers to accelerated… 743

If Eφ(α,G) is normal, then ‖Eφ(α,G)‖2 = ρ(Eφ(α,G)). Therefore for A-stable
methods the linear convergence follows directly from the norm contraction

‖yk+1‖2 ≤ ρ(Eφ(α,G)) ‖yk‖2 . (34)

In general cases, however, bounding the spectral radius by one does not imply the
norm contraction, i.e., (34) may not be true when Eφ(α,G) is non-normal, even if
(33) is A-stable. Nevertheless, we shall continue using the tool of A-stability through
spectral analysis and comment on its limitation in Sect. 2.6.

2.2 Implicit and explicit Euler methods

It is well known that the implicit Euler (IE) method

yk+1 − yk
α

= Gyk+1

is unconditionally A-stable. Indeed, EIE(α,G) = (I −αG)−1 and ρ(EIE(α,G)) < 1
for all α > 0 since all eigenvalues of αG lie on the left of the complex plane and their
distances to 1 are larger than one. Moreover, as it has no restriction on the step size,
the implicit Euler method can achieve faster convergent rate by time rescaling which
is equivalent to choosing a large step size.

In contract, the explicit Euler method

yk+1 − yk
α

= Gyk (35)

is only conditionally A-stable. Let us consider the caseG = −Awithμ > 0. Then (35)
is exactly the gradient descent method for minimizing 1

2 x
�Ax . It is not hard to obtain

that

ρ(EGD(α,−A)) = ρ(I − αA) = max
{ |1 − αμ| , |1 − αL| }. (36)

Hence ρ(EGD(α,−A)) < 1 provided 0 < α < 2/L . Thanks to the symmetry of A,
we have ‖EGD(α,−A)‖2 = ρ(EGD(α,−A)) and the norm convergence with linear
rate follows. Moreover, based on (36), a standard argument outputs the optimal choice
α∗ = 2/(μ + L), which gives the minimal spectrum

‖EGD(α∗,−A)‖2 = min
α>0

ρ(I − αA) = κ(A) − 1

κ(A) + 1
. (37)

A quasi-optimal but simpler choice is α∗ = 1/L which yields

‖EGD(α∗,−A)‖2 = ρ(I − α∗A) = 1 − 1

κ(A)
. (38)
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We formulate the convergence rates (37) and (38) in terms of the condition number
κ(A) as it is invariant to the rescaling of A, i.e., κ(cA) = κ(A) for any real number
c �= 0. To be A-stable, one has to choose 0 < α < 2/λmax(A). It seems that a
simple rescaling to cA can reduce λmax(cA) and thus enlarge the range of the step
size. However, the condition number κ(cA) = κ(A) is invariant. From this we see
that for the GD method (35), the simple rescaling cA is in vain.

The magnitude of the step size is relative to min |λ(G)|. To fix the discussion, we
chose G = −A/μ in (35) so that λmin(A/μ) = 1. Then in order for the explicit Euler
method to be A-stable it is equivalent to choose α = O(1/κ(A)) which leads to the
contraction rate 1 − 1/κ(A). Consequently for ill-conditioned problems, a tiny step
size proportional to 1/κ(A) is required.

Rather than the rescaling, our main intuition is to seek some transformation G
of A, that reduces κ(A) to κ(G) = O(

√
κ(A)). We wish to construct explicit A-

stable methods which can enlarge the step size from O(1/κ(A)) to O(1/
√

κ(A)) and
consequently improve the contraction rate from 1 − 1/κ(A) to O(1 − 1/

√
κ(A)).

2.3 Transformation to the complex plane

Let us first consider the case μ > 0 and embed A into some 2 × 2 block matrix G
with a rotation built-in. Specifically, we construct two candidates

GHB =
(

0 I
−A/μ −2I

)
and GNAG =

( −I I
I − A/μ −I

)
. (39)

Due to the asymmetrical fact, σ(A) will be transformed from the real line to the
complex plane. This may shrink the condition number; see the following result.

Proposition 1 For G = GHB or GNAG given in (39), it satisfies Re(λ) < 0 for any
λ ∈ σ(G), which promises the decay property ‖y(t)‖2 → 0 for the system y′ = Gy.
Moreover, we have κ(GHB) = κ(GNAG) = √

κ(A).

Proof Let us first consider G = GHB . As A is symmetric, we can write A = UΛU�
with unitary matrix U and diagonal matrix Λ consisting of eigenvalues of A. By
applying the similar transform to G with the block diagonal matrix diag(U ,U ), it
suffices to consider eigenvalues of

RHB =
(

0 1
−θ −2

)
, θ ∈ σ(A/μ).

It is clear that det RHB = θ and tr RHB = −2 < 0. In addition, since
∣∣tr RHB

∣∣2 ≤
4 det RHB , any eigenvalue λR ∈ σ(RHB) is a complex number and

Re(λR) = −1, |λR | = √det RHB = √
θ.

As 1 = λmin(A/μ) ≤ θ ≤ λmax(A/μ) = κ(A), we conclude κ(GHB) = √
κ(A).
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From differential equation solvers to accelerated… 745

Apply the similar transformation with P =
(
1 0
1 1

)
, we observe that

RNAG = PRHB P
−1 =

( −1 1
1 − θ −1

)
.

So σ(RNAG) = σ(RHB) and consequently κ(GNAG) = √
κ(A). This completes the

proof of this proposition. ��
We write y = (x, v)� and eliminate v in y′ = Gy to get a second order ODE of x ,

in which we replace Ax by general form ∇ f (x). Both GHB and GNAG yield the same
thing

μx ′′ + 2μx ′ + ∇ f (x) = 0, (40)

which is a special case of the HB model (cf. (21)).
Note thatwecanfinda lot of transformationsG andderive correspondingODEmod-

els. Indeed, given any G that meets our demand, both cG and QGQ−1 are acceptable
candidates, where c > 0 and Q is some invertible matrix. We are not going further
deep beyond those two transformations given in (39) for the strongly convex case
μ > 0 but aim to combine the transformation with a refined time scaling to propose
another one for convex case μ = 0 in Sect. 2.5.

2.4 Acceleration from a Gauss–Seidel splitting

We now consider numerical discretization for (32) with G = GHB and GNAG given
in (39). As discussed in Sect. 2.2, the implicit Euler method is unconditionally A-
stable. But computing (I − αG)−1 needs significant effort and may not be practical.

One may hope that the explicit Euler method yk+1 = (I + αG)yk will be A-stable
with step size α = O(1/κ(G)) = O(1/

√
κ(A)). Unfortunately, unlike the discussion

for (35) with G = −A, where σ(I − αA) lies on the real line and ρ(I − αA) can
be easily shrunk by choosing α = 1/ρ(A) (cf. (36)), the general asymmetric G
spreads the spectrum on the complex plane. For both G = GHB and G = GNAG , we
have �(λ) = −1 for all λ ∈ σ(G). Denote by r = ρ(G). Then ρ2(I + αG) =
(1 − α)2 + α2(r2 − 1). To be A-stable, requiring ρ(I + αG) < 1 is equivalent to
letting 0 < α < 2/r2 = O(1/κ(A)), where small step size α = O(1/κ(A)) is still
needed. The optimal choice α∗ = r−2 only gives

ρ(I + α∗G) = 1 − α∗ = 1 − O(1/κ(A)),

where no acceleration has been obtained.
We then expect that an explicit scheme closer to the implicit Euler method will

hopefully have better stability with a larger step size.
Motivated by the Gauss–Seidel (GS) method [45] for computing (I − αG)−1, we

consider the matrix splitting G = M + N with M being the lower triangular part of G
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746 H. Luo, L. Chen

(including the diagonal) and N = G − M , and propose the following Gauss–Seidel
splitting scheme

yk+1 − yk
α

= Myk+1 + Nyk (41)

which gives the relation

yk+1 = E(α,G)yk, E(α,G) := (I − αM)−1(I + αN ). (42)

Note that forG = GHB andGNAG , the scheme (41) is still explicit as the lower triangular
block matrix I − αM can be inverted easily, without involving A−1.

The spectrum bound is given below and for the algebraic proof details, we refer to
“Appendix A”.

Theorem 1 For G = GHB or GNAG given in (39), if 0 < α ≤ 2/
√

κ(A), then the
Gauss–Seidel splitting scheme (41) is A-stable and

ρ(E(α,G)) ≤ 1√
1 + 2α

.

2.5 Dynamic time rescaling for the convex case

The ODE model (40) given in Sect. 2.3 cannot treat the case μ = 0 and the previous
spectral analysis fails. Equivalently the condition number κ(A) is infinity and the
spectrum bound becomes 1. To conquer this, a careful rescaling is needed. Throughout
this subsection, we assume μ = 0.

For the gradient flow

x ′(t) = −∇ f (x(t)), (43)

one can easily establish the sub-linear rate f (x(t))− f (x∗) ≤ C/t ; see [37]. To recover
the exponential rate, we introduce a time rescaling t(s) = es and let y(s) = x(t(s)).
Then (43) becomes the following rescaled gradient flow

γ (s)y′(s) = −∇ f (y(s)), (44)

with the scaling factor γ (s) = es . Besides, the previous sublinear rate f (x(t)) −
f (x∗) ≤ C/t turns into f (y(s))− f (x∗) ≤ Ce−s . That is in the continuous level, we
can achieve the exponential decay through suitable rescaling of time even for μ = 0 .

Now let us go back to our model case f (x) = 1
2 x

�Ax with μ = 0 and λmax(A) =
L . Coupled with the transformation GNAG , we consider

y′ = G(γ ) y, G(γ ) =
( −I I

−A/γ O

)
, (45)
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where y = (x, v)� and

γ ′ = −γ, γ (0) = γ0 > 0. (46)

This gives a second-order ODE in terms of x :

γ x ′′ + γ x ′ + ∇ f (x) = 0, (47)

which is in the HB type but with variable damping coefficients.
Obviously, the implicit Eulermethod for solving (45) is still unconditional A-stable.

We now apply the GS splitting (41) to (45) and get

yk+1 = E(αk,G(γk+1))yk, (48)

where E(αk,G(γk+1)) is defined in (42). The equation (46) is discretized by

γk+1 = γk − αkγk+1. (49)

Eliminating vk in (48) will give an HB method with variable coefficients

xk+1 = xk − αkαk−1

γk + αkγk
∇ f (xk) + αk

αk−1 + αkαk−1
(xk − xk−1).

Instead of studying the spectrum bound E(αk,G(γk+1)) which is 1, we apply the
scaling technique to obtain a regularized matrix

Ẽk =
(
I O
O γk+1 I

)
E(αk,G(γk+1))

(
I O
O γk I

)−1

,

which is nearly similar with E(αk,G(γk+1)). Set zk =
(
I O
O γk I

)
yk , then the discrete

system (48) for {yk} becomes

zk+1 = Ẽk zk, (50)

With a careful chosen step size, the spectrum bound of Ẽk is given below and for
the algebraic proof details, we refer to “Appendix A”. We note that, the step size in
Theorem 2 is only to agree with the setting of Lemma B2 and for general choice
Lα2

k/γk = O(1) and suitable initial value γ0, it is possible to maintain the spectrum
bound (51) together with the decay estimate (52).

Theorem 2 If γ0 = L and Lα2
k = γk(1 + αk), then both the scheme (48) and its

equivalent form (50) are A-stable and we have

ρ(Ẽk) = γk+1

γk
= 1

1 + αk
, (51)
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which further implies that

k−1∏
i=0

ρ(Ẽi ) = γk

γ0
= O(k−2). (52)

2.6 Limitation of spectral analysis

For quadratic objective f , both the ODE models (40) and (47) are linear and the
spectrum bound of E(α,G) for the Gauss–Seidel splitting (42) is derived. But as
pointed out in the beginning, for A-stable methods, bounding the spectral radius by
one is not sufficient for the norm convergence if the matrix E(α,G) is non-normal;
see convincible examples in [23, Appendix D.2] and [23, Appendix D.4].

Moving beyond quadratic f and nonlinear ODE systems, transient growth or insta-
bility of perturbed problems can easily lead to nonlinear instabilities. Particularly, for
the HB system (21), it is shown in [22] that the parameters optimized for linear ODE
models does not guarantee the global convergence for a nonlinear system.

To provide rigorous convergence analysis for both continuous and discrete lev-
els, in the sequel we shall introduce the tool of Lyapunov function. Following many
related works [6,37,43], we first analyze some proper ODEs via a Lyapunov function,
then construct optimization algorithms from numerical discretizations of continuous
models and use a discrete Lyapunov function to establish the convergence rates of the
proposed algorithms.

3 Nesterov accelerated gradient flow

3.1 Continuous problem

In the previous section, we have obtained two ODE models for quadratic objective
f (x) = 1

2 x
�Ax with μ > 0 and μ = 0, respectively. To handle those two cases in a

unified way, we combine GNAG in (39) with G(γ ) in (45) and consider the following
transformation

G =
( −I I

μ/γ − A/γ −μ/γ I

)
, (53)

where

γ ′ = μ − γ, γ (0) = γ0 > 0. (54)

One can solve the above equation and obtain

γ (t) = μ + (γ0 − μ)e−t , t ≥ 0.
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Sinceγ0 > 0,wehave thatγ (t) > 0 for all t ≥ 0 andγ (t) converges toμ exponentially
and monotonically as t → +∞. In particular, if γ0 = μ > 0, then γ (t) = μ.
Therefore, when μ = 0, (53) reduces to (45) and when γ0 = μ > 0, (53) recovers
(39) indeed. Correspondingly, the transform (53) gives the system

{
x ′ = v − x,

γ v′ = μ(x − v) − Ax .
(55)

Heuristically, for general f ∈ S1
μ with μ ≥ 0, we just replace Ax in (55) with

∇ f (x) and obtain our NAG flow

{
x ′ = v − x,

γ v′ = μ(x − v) − ∇ f (x),
(56)

with initial conditions x(0) = x0 and v(0) = v0. The equivalent second-order ODE
(will also be abbreviated as NAG flow) reads as follows

γ x ′′ + (μ + γ )x ′ + ∇ f (x) = 0, (57)

with initial conditions x(0) = x0 and x ′(0) = v0 − x0. Clearly, if γ0 = μ > 0,
then (57) becomes (40), and if μ = 0, then (57) coincides with (47).

Motivated by (30), we introduce a Lyapunov function for (56):

L(t) := f (x(t)) − f (x∗) + γ (t)

2

∥∥v(t) − x∗∥∥2 , t ≥ 0. (58)

In addition, we need the following lemma, which is trivial but very useful for the
convergence analysis in both of the continuous and discrete levels.

Lemma 1 For any u, v, w ∈ V , we have

2(u − v, v − w) = ‖u − w‖2 − ‖u − v‖2 − ‖v − w‖2 .

Wefirst present thewell-posedness of (57) and prove the exponential decay property
of the Lyapunov function (58).

Lemma 2 If f ∈ S1,1
μ,L with μ ≥ 0, then the NAG flow (57) admits a unique solution

x ∈ C2([0,∞); V ) and moreover

L′(t) ≤ −L(t) − μ

2
‖x ′(t)‖2, (59)

which implies that

L(t) + μ

2

∫ t

0
es−t

∥∥x ′(s)
∥∥2 ds ≤ e−tL(0), t ≥ 0. (60)
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Proof Basically, as ∇ f is Lipschitz continuous, applying the standard existence and
uniqueness results of ODE (see [9, Theorem 4.1.4]) yields the fact that the system (56)
admits a unique classical solution (x, v) ∈ C1([0,∞); V ) × C1([0,∞); V ). This
implies that x ′ = v − x ∈ C1([0,∞); V ), and therefore x ∈ C2([0,∞); V ) is also
the unique solution to our NAG flow (57).

It remains to prove (59), which yields the exponential decay (60) immediately. A
straightforward calculation yields that

L′(t) = 〈∇ f (x), x ′〉+ γ ′

2

∥∥v − x∗∥∥2 + γ
〈
v′, v − x∗〉 ,

and by (54) and (56), we replace γ ′ and v′ by their right hand side terms and obtain

L′(t) = 〈∇ f (x), x ′〉+ μ − γ

2

∥∥v − x∗∥∥2 + 〈μ(x − v) − ∇ f (x), v − x∗〉 . (61)

Let us focus on the last term. Thanks to Lemma 1,

μ(x − v, v − x∗) = μ

2

(∥∥x − x∗∥∥2 − ‖x − v‖2 − ∥∥v − x∗∥∥2) ,

and the gradient term is split as follows

− 〈∇ f (x), v − x∗〉 = −〈∇ f (x), v − x〉 − 〈∇ f (x), x − x∗〉 . (62)

By the relation x ′ = v − x , the first term in (62) becomes
〈−∇ f (x), x ′〉which cancels

the first term in (61). Combining all identities together gives

L′(t) = μ

2

∥∥x − x∗∥∥2 − 〈∇ f (x), x − x∗〉− γ

2

∥∥v − x∗∥∥2 − μ

2
‖x ′‖2. (63)

As f is μ-strongly convex (cf.(2)), there holds

μ

2

∥∥x − x∗∥∥2 − 〈∇ f (x), x − x∗〉 ≤ f (x∗) − f (x),

and plugging this into (63) implies that

L′(t) ≤ −L(t) − μ

2
‖x ′(t)‖2,

which proves (59) and thus completes the proof of this lemma. ��

Remark 1 According to the proof of Lemma 2, the Eq. (54) for γ can be relaxed
to γ ′ ≤ μ − γ . This makes (61) and (63) become inequality but leaves the final
estimate (59) invariant. ��

123



From differential equation solvers to accelerated… 751

3.2 Rescaling property

Based on our NAG flow (56) (or (57)), it is possible to use time scaling technique to
construct more ODE systems with any desirable convergence rate. It is worth distin-
guishing the connection and difference with existing dynamical models.

Specifically, let α be any continuous nonnegative function onR+, and consider the
time rescaling

t(τ ) =
∫ τ

0
α(s) ds, τ > 0. (64)

Set y(τ ) = x(t(τ )), w(τ) = v(t(τ )) and β(τ) = γ (t(τ )), then it is clear that

y′(τ ) = t ′(τ )x ′(t(τ )) = α(τ)x ′(t(τ )),

Similarly, w′(τ ) = α(τ)v′(t(τ )) and plugging those facts into (56) gives the scaled
NAG flow

{
y′ = α(w − y),

βw′ = μα
(
y − w

)− α∇ f (y),
(65)

with initial conditions y(0) = x0 and y′(0) = α(0)x ′(0). By Remark 1, the Eq. (54)
can be replaced by γ ′ ≤ μ − γ , which becomes

β ′ ≤ α(μ − β), β(0) = γ0. (66)

Correspondingly, the Lyapunov function (58) reads as follows

L̃(τ ) := f (y(τ )) − f (x∗) + β(τ)

2

∥∥w(τ) − x∗∥∥2 , τ ≥ 0.

Analogously to (59), we can prove

L̃′ ≤ −αL̃ − μα

2
‖w − y‖2,

which implies that

L̃(τ ) ≤ e− ∫ τ
0 α(s) dsL̃(0), τ ≥ 0. (67)

Therefore, larger scaling factor α promises faster decay rate.
We note that the scaled NAGflow (65) is very close to the twomodels (27) and (29),

which are derived in [43] and [44] respectively, via the variational perspective. Indeed,
they differsmainly from the coefficient ofw′. By (66), an elementary calculation gives

β(τ) ≤ μ + (γ0 − μ)e− ∫ τ
0 α(s) ds, τ ≥ 0.
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Therefore, (65) chooses variable coefficient β(τ) for μ ≥ 0, while (27) considers
dynamically changing coefficient (26) only forμ = 0 and (29) adopts fixed parameter
μ > 0. For strongly convex case μ > 0, if we take β = μ, which satisfies (66),
then the scaled system (65) coincides with (29). For convex case μ = 0, if both (27)
and (66) are equalities, then (65) agrees with (27). Hence, we conclude that our NAG
flow system is more tight and provides a unified way to handle μ = 0 and μ > 0.

Now, let us look at a concrete rescaling example. Let the scaling factor α satisfy

2α′ ≤ μ − α2, α(0) = √
γ0. (68)

For instance, the following choice is allowed:

α(τ) =
√

γ0 b√
γ0 τ + b

, 0 < b ≤ 2. (69)

For the equality case of (68), we have a closed-form solution

α(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

γ0√
γ0 τ + 2

, if μ = 0,

√
μ · e

√
μ τ − αμ

e
√

μ τ + αμ

, if μ > 0,

(70)

where

αμ =
√

μ − √
γ0√

μ + √
γ0

∈ (−1, 1).

We now set β = α2 which fulfills (66) by our assumption (68), then the scaled NAG
flow (65) gives a new HB system

y′′ + 1

α

(
μ + α2 − α′) y′ + ∇ f (y) = 0. (71)

According to (67), we have the estimate

L̃(τ ) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bbL̃(0)

(
√

γ0τ + b)b
, if α satisfies (69),

(1 + αμ)2L̃(0)
(
e
√

μτ/2 + αμe−√
μτ/2

)2 , if α satisfies (70) and μ > 0.

Particularly, if μ > 0 and α satisfies (70) with γ0 = √
μ, then α(τ) = √

μ and (71)
recovers (31) with the same rate O(e−√

μτ ). Moreover, if μ = 0 and α satisfies (69)
with γ0 = 4 and b = 2, then α(τ) = 2/(τ + 1) and (71) becomes

y′′ + 3

τ + 1
y′ + ∇ f (y) = 0, τ > 0,
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which gives the decay rate O(τ−2) and coincides with the prevailing ODEmodel (22)
derived in [37].

4 An implicit scheme

Exponential decay of an implicit discretization for solving (56) can be established,
which is more or less straightforward since one can easily follow the proof from
the continuous problem. However, the implicit scheme requires efficient solver or
proximal calculation and may not be practical sometimes. It is presented here to
bridge the analysis from the continuous level to semi-implicit and explicit schemes.

Consider the following implicit scheme

⎧⎪⎪⎨
⎪⎪⎩

xk+1 − xk
αk

= vk+1 − xk+1,

vk+1 − vk

αk
= μ

γk
(xk+1 − vk+1) − 1

γk
∇ f (xk+1),

(72)

where αk > 0 denotes the time step size to discretize the time derivative and the
parameter Eq. (54) is also discretized implicitly

γk+1 − γk

αk
= μ − γk+1, γ0 > 0. (73)

We shall present the convergence result for the implicit scheme (72)–(73). To do
so, we introduce a suitable Lyapunov function

Lk := f (xk) − f (x∗) + γk

2

∥∥vk − x∗∥∥2 , (74)

which is clearly a discrete analogue to the continuous one (58).

Theorem 3 If f ∈ S1
μ with μ ≥ 0, then for the scheme (72) with αk > 0, we have

Lk+1 ≤ Lk

1 + αk
, k ∈ N.

Proof It suffices to prove

Lk+1 − Lk ≤ −αkLk+1. (75)
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Let us mimic the proof of Lemma 2. Instead of the derivative, we compute the
difference as follows

Lk+1 − Lk = f (xk+1) − f (xk) + γk+1 − γk

2

∥∥vk+1 − x∗∥∥2

+ γk

2

(∥∥vk+1 − x∗∥∥2 − ∥∥vk − x∗∥∥2)

= f (xk+1) − f (xk) + αk

2
(μ − γk+1)

∥∥vk+1 − x∗∥∥2

+ γk
(
vk+1 − vk, (vk+1 + vk)/2 − x∗) .

Analogously to the continuous level, we focus on the last term

γk
(
vk+1 − vk, (vk+1 + vk)/2 − x∗)

= γk
(
vk+1 − vk, vk+1 − x∗)− γk

2
‖vk+1 − vk‖2 .

By (72), it follows that

γk
(
vk+1 − vk, vk+1 − x∗)

= μαk
(
xk+1 − vk+1, vk+1 − x∗)− αk

〈∇ f (xk+1), vk+1 − x∗〉 ,

and we use Lemma 1 to split the cross term into squares:

2
(
xk+1 − vk+1, vk+1 − x∗)

= ∥∥xk+1 − x∗∥∥2 − ‖xk+1 − vk+1‖2 − ∥∥vk+1 − x∗∥∥2 .

For the gradient term, we have vk+1 − x∗ = vk+1 − xk+1 + xk+1 − x∗ and use (72)
to obtain

− αk
〈∇ f (xk+1), vk+1 − x∗〉

= −〈∇ f (xk+1), xk+1 − xk〉 − αk
〈∇ f (xk+1), xk+1 − x∗〉 .

Consequently, using theμ-strongly convex property (cf.(2)) of f and dropping surplus
negative square terms, we see

Lk+1 − Lk ≤ − αkLk+1.

This proves (75) and concludes the proof of this theorem. ��
We observe from Theorem 3 that the fully implicit scheme (72) achieves linear

convergence rate as long as αk ≥ α > 0 for all k > 0 and larger αk yields faster
convergence rate. We also mention that (72) can be rewritten as

⎧⎨
⎩
xk+1 = proxηk f (yk),

vk+1 = xk+1 + xk+1 − xk
αk

,
(76)
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where the proximal operator proxηk f has been introduced in (8) and

γk+1 = γk + μαk

1 + αk
, ηk = α2

k

γk + (μ + γk)αk
, yk = γkαkvk + (γk + μαk)xk

γk + (μ + γk)αk
.

Therefore, it allows f to be nonsmooth and we claim that Theorem 3 still holds true
in this case. One just replaces the gradient ∇ f (xk+1) with the subgradient (yk −
xk+1)/ηk ∈ ∂ f (xk+1); see (105) and (112).

For convex case, i.e., μ = 0, our method (76) is very close to Güler’s proximal
point algorithm [20]

⎧⎨
⎩
xk+1 = proxηk f (yk), ηk = α2

k/γk+1,

vk+1 = xk + xk+1 − xk
αk

,

where γk+1 − γk = −αkγk and yk = αkvk + (1 − αk)xk . Indeed, with suitable step
size, they share the similar rate; see [20, Theorem 2.3] and Theorem 4 below.

Theorem 4 If f is proper, closed and convex and we choose α2
k = ηkγk(1 + αk) with

ηk > 0, then for the proximal point algorithm (76) with μ = 0, we have

L0

(1 +∑k−1
i=0

√
γ0ηi )2

≤ Lk ≤ 4L0

(2 +∑k−1
i=0

√
γ0ηi )2

, (77)

which means if
∑∞

k=0
√

ηk = ∞ then Lk → 0 as k → ∞. Moreover, it holds that

Lk ≤ 4∑k−1
i=0

√
ηi

(
1

γ0

(
f (x0) − f (x∗)

)+ 1

2

∥∥v0 − x∗∥∥2
)

. (78)

Proof For convenience and later use, define a sequence {ρk} by that

ρ0 = 1, ρk :=
k−1∏
i=0

1

1 + αi
, k ≥ 1. (79)

As mentioned above, Theorem 3 holds true for such a nonsmooth f and thus it is
evident thatLk ≤ ρkL0. Invoking Lemma B2 proves (77) and it is trivial to obtain (78)
from (77). This finishes the proof. ��

Remark 2 Note that the sequence {γk} in (73) is bounded: 0 < γk ≤ max{μ, γ0}
and γk → μ as k → ∞. Hence, even for large γ0, the Lyapunov function Lk is
asymptotically bounded as k → ∞. In addition, from (77) and (78), we see that, for
small γ0, the convergence rate depends on γ0 but large γ0 does not pollute the final
rate. This fact also holds true for all the forthcoming convergence bounds. ��
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5 Gauss–Seidel splitting with corrections

This section considers the Gauss–Seidel splitting (41), which is a semi-implicit dis-
cretization. In Sect. 2.4, we have established the spectrum bound O(1− √

μ/L) with
step size αk = O(

√
μ/L) for quadratic objectives. However, as we summarized in

Sect. 2.6, spectral analysis is not sufficient for (norm) convergence.
Indeed, in the sequel, we further show that, for the discrete Lyapunov function (74),

with any step size αk > 0, the naive discretization (41), reformulated as (80), does
not lead to the contraction property like (75). This motivates us to add some proper
correction steps.

5.1 The Gauss–Seidel splitting

Recall the Gauss–Seidel splitting (41): given step size αk > 0 and previous result
(xk, vk), compute (xk+1, vk+1) from

⎧⎪⎪⎨
⎪⎪⎩

xk+1 − xk
αk

= vk − xk+1,

vk+1 − vk

αk
= μ

γk
(xk+1 − vk+1) − 1

γk
∇ f (xk+1).

(80)

In addition, the parameter Eq. (54) of γ is still discretized implicitly via (73).

Lemma 3 If f ∈ S1
μ with μ ≥ 0, then for (80) with any step size αk > 0, we have

Lk+1 − Lk ≤ −αkLk+1 − γk

2
‖vk+1 − vk‖2 − αk 〈∇ f (xk+1), vk+1 − vk〉 , (81)

and

Lk+1 − Lk ≤ −αkLk+1 + α2
k

2γk
‖∇ f (xk+1)‖2∗ . (82)

Proof Following the proof of Theorem 3, we start from the difference

Lk+1 − Lk = f (xk+1) − f (xk) − αkγk+1

2

∥∥vk+1 − x∗∥∥2

− μαk

2
‖xk+1 − vk+1‖2 − γk

2
‖vk+1 − vk‖2

+ μαk

2

∥∥xk+1 − x∗∥∥2 − αk
〈∇ f (xk+1), vk+1 − x∗〉 .
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Using the update for xk+1 in (80), we split the gradient term as below

− αk
〈∇ f (xk+1), vk+1 − x∗〉

= −αk 〈∇ f (xk+1), vk+1 − vk〉 − 〈∇ f (xk+1), αk(vk − xk+1)〉
− αk

〈∇ f (xk+1), xk+1 − x∗〉

= −αk 〈∇ f (xk+1), vk+1 − vk〉 − 〈∇ f (xk+1), xk+1 − xk〉
− αk

〈∇ f (xk+1), xk+1 − x∗〉 .

As f ∈ S1
μ, we obtain that

Lk+1 − Lk ≤ − αkLk+1 − γk

2
‖vk+1 − vk‖2 − αk 〈∇ f (xk+1), vk+1 − vk〉

− μαk

2
‖xk+1 − vk+1‖2 − μ

2
‖xk+1 − xk‖2 .

Ignoring all the negative terms of the second line, the above estimate implies (81).
As we see, different from (75), the estimate (81) contains a combination of a nega-

tive term and another cross term. Obviously, an easy application of Cauchy-Schwarz
inequality yields

−γk

2
‖vk+1 − vk‖2 − αk 〈∇ f (xk+1), vk+1 − vk〉 ≤ α2

k

2γk
‖∇ f (xk+1)‖2∗ .

This proves another bound (82) that only involves a positive gradient norm. ��

5.2 A predictor–corrector method

To conquer the cross term−αk 〈∇ f (xk+1), vk+1 − vk〉 in (81), we add an extra extrap-
olation step to (80)which canbe thought as an semi-implicit discretizationof x ′ = v−x
with the newest update vk+1. More precisely, consider

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk − xk
αk

= vk − yk,

vk+1 − vk

αk
= μ

γk
(yk − vk+1) − 1

γk
∇ f (yk),

xk+1 − xk
αk

= vk+1 − xk+1.

(83)

This is in line with the spirit of the predictor-corrector method for ODE solvers [39,
Section 3.8]. The variable yk is the predictor produced by an explicit scheme and xk+1
is the corrector by an implicit scheme. It can be also thought of as a symmetric Gauss–
Seidel iteration for approximating the implicit Euler method. Again, the parameter
Eq. (54) of γ is still discretized via (73).
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As the first two steps of (83) agree with (80), with xk+1 being yk , recalling the
estimate (81), we have

L̂k − Lk ≤ −αkL̂k − γk

2
‖vk+1 − vk‖2 − αk 〈∇ f (yk), vk+1 − vk〉 ,

where

L̂k := f (yk) − f (x∗) + γk+1

2

∥∥vk+1 − x∗∥∥2 . (84)

Therefore, it follows that

L̂k ≤ Lk

1 + αk
− γk

2(1 + αk)
‖vk+1 − vk‖2 − αk

1 + αk
〈∇ f (yk), vk+1 − vk〉 .

From the update for yk and xk+1 in (83), we find the relation

xk+1 − yk = αk

1 + αk
(vk+1 − vk),

and if f ∈ S1,1
μ,L , then there comes the estimate (cf. (4))

Lk+1 − L̂k = f (xk+1) − f (yk)

≤ 〈∇ f (yk), xk+1 − yk〉 + L

2
‖xk+1 − yk‖2

= αk

1 + αk
〈∇ f (yk), vk+1 − vk〉

+ Lα2
k

2(1 + αk)2
‖vk+1 − vk‖2 .

As a result, we obtain

Lk+1 ≤ Lk

1 + αk
+
(

Lα2
k

2(1 + αk)2
− γk

2(1 + αk)

)
‖vk+1 − vk‖2 . (85)

The second term vanishes if we choose suitable step size; see the theorem below.

Theorem 5 Assume that f ∈ S1,1
μ,L with 0 ≤ μ ≤ L < ∞ and Lα2

k = γk(1 + αk),
then for the predictor-corrector scheme (83) together with (73), we have

Lk+1 ≤ Lk

1 + αk
, k ∈ N, (86)

where Lk is defined by (74). Consequently, for all k ≥ 0,

Lk ≤ L0 × min

⎧
⎨
⎩

4L

(
√

γ0 k + 2
√
L)2

,

(
1 +

√
min{γ0, μ}

L

)−k
⎫
⎬
⎭ , (87)
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and moreover, for all k ≥ 1,

Lk ≤ Cγ0,L × min

⎧⎨
⎩

4

k2
,

(
1 +

√
min{γ0, μ}

L

)1−k
⎫⎬
⎭ , (88)

where

Cγ0,L := L

γ0

(
f (x0) − f (x∗)

)+ L

2

∥∥v0 − x∗∥∥2 . (89)

Proof The inequality (85) suggests the choice Lα2
k = γk(1 + αk) and promises (86).

Recalling the sequence {ρk} defined by (79), we have Lk ≤ ρkL0. Hence, using
Lemma B2 gives the decay estimate of ρk and proves (87).

It remains to check (88) for all k ≥ 1.
From Lemma B2 we easily get

ρkL0 ≤
(
f (x0) − f (x∗) + γ0

2

∥∥v0 − x∗∥∥2)× 4L

(
√

γ0 k + 2
√
L)2

≤ 4Cγ0,L

k2

(90)

On the other hand, by the relation Lα2
0 = γ0(1 + α0), it is evident that

α0 = 1

2L

(
γ0 +

√
4γ0L + γ 2

0

)
,

which implies

1

1 + α0
= 2L

γ0 + 2L +
√
4γ0L + γ 2

0

≤ L

γ0
.

The above estimate also indicates that

ρkL0 = L0

1 + α0

ρk

ρ1
≤ Cγ0,L

ρk

ρ1
= Cγ0,L ×

k−1∏
i=1

1

1 + αi
.

Applying Lemma B2 shows αk ≥ √
min{γ0, μ}/L and it follows that

ρkL0 ≤ Cγ0,L ×
(
1 +√min{γ0, μ}/L

)1−k
.

Collecting this estimate and (90) establishes the final rate (88) and thus completes the
proof of this theorem. ��
Remark 3 We mention that the estimate (88) verifies the claim made previously in
Remark 2. That is, the convergence rate given in Theorem 5 depends on small γ0 but
is robust when γ0 ≥ L . ��
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5.3 Correction via a gradient step

Motivated by the estimate (82), we can also aim to cancel the squared gradient norm.
One preferable choice is the gradient descent step and according to our discussion
below, any other correction step satisfying the decay property (94) is acceptable. Note
that the two numerical schemes proposed in [38,44] for the HB Eq. (31) also have
additional gradient steps.

As what we did before, replace xk+1 by yk in (80) and consider the following
corrected scheme: given αk > 0 and (xk, vk), compute (xk+1, vk+1) from

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk − xk
αk

= vk − yk,

vk+1 − vk

αk
= μ

γk
(yk − vk+1) − 1

γk
∇ f (yk),

xk+1 − yk = − 1

L
∇ f (yk).

(91)

The implicit discretization (73) for the parameter Eq. (54) keeps unchanged here. In
the first equation yk can be solved in terms of the known data (xk, vk). After that, we
evaluate the gradient ∇ f (yk) once and use it to update (xk+1, vk+1).

Theorem 6 Assume that f ∈ S1,1
μ,L with 0 ≤ μ ≤ L < ∞ and Lα2

k = γk(1 + αk),
then for the corrected scheme (91) together with (73), we have

Lk+1 ≤ Lk

1 + αk
, k ∈ N, (92)

where Lk is defined by (74), and both the two estimates (87) and (88) hold true here.

Proof According to (82) in Lemma 3, we have established that

L̂k − Lk ≤ −αkL̂k + α2
k

2γk
‖∇ f (yk)‖2∗ , (93)

where L̂k is defined by (84). Thanks to the additional gradient step in (91), we have
the basic gradient descent inequality:

f (xk+1) − f (yk) ≤ − 1

2L
‖∇ f (yk)‖2∗ , (94)

which comes from (4) since f ∈ S1,1
μ,L and implies that

Lk+1 ≤ L̂k − 1

2L
‖∇ f (yk)‖2∗ .

123



From differential equation solvers to accelerated… 761

Plugging this into (93) gives

Lk+1 − Lk ≤ −αkLk+1 + 1

2Lγk

(
Lα2

k − γk(1 + αk)
)

‖∇ f (yk)‖2∗ .

This together with the condition Lα2
k = γk(1 + αk) yields (92).

As we choose the same step size as Theorem 5, based on the contraction (92), it
is trivial to conclude that the two estimates (87) and (88) hold true here indeed. This
completes the proof of this theorem. ��

6 A corrected semi-implicit scheme fromNAGmethod

In this section, we consider another semi-implicit scheme which comes exactly from
Nesterov accelerated gradient method.

6.1 NAGmethod

In [29, Chapter 2, General scheme of optimalmethod], by using the estimate sequence,
Nesterov presented an accelerated gradient method for solving (1) with f ∈ S1,1

μ,L ,
0 ≤ μ ≤ L < ∞; see Algorithm 1 below.

Algorithm 1 Nesterov Accelerated Gradient (NAG) Method
Input: x0, v0 ∈ V and γ0 > 0.
1: for k = 0, 1, . . . do
2: Compute αk ∈ (0, 1) from Lα2k = (1 − αk )γk + μαk .
3: Update γk+1 = (1 − αk )γk + μαk .

4: Set yk = αkγkvk + γk+1xk
γk + μαk

.

5: Update xk+1 such that f (xk+1) ≤ f (yk ) − 1

2L
‖∇ f (yk )‖2∗.

6: Update vk+1 = 1

γk+1

[
(1 − αk )γkvk + αk (μyk − ∇ f (yk ))

]
.

7: end for

Note that we have many choices for xk+1 in step 5 of Algorithm 1. One noticeable
example is the gradient descent step (see [29, Chapter 2, Constant Step Scheme, I]):

xk+1 = yk − 1

L
∇ f (yk). (95)

With this choice, the sequence {vk} in Algorithm 1 can be eliminated and yk+1 is
updated by that (see [29, Chapter 2, Constant Step Scheme, II])

yk+1 = xk+1 + αk − α2
k

αk+1 + α2
k

(xk+1 − xk),
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where αk+1 ∈ (0, 1) is calculated from the quadratic equation

Lα2
k+1 = Lα2

k (1 − αk+1) + μαk+1.

If μ > 0 and α0 = √
μ/L , then αk = √

μ/L; see [29, Chapter 2, Constant Step
Scheme, III]. In particular, if μ = 0, then Algorithm 1 (with xk+1 updated by (95))
coincides with the accelerated scheme proposed by Nesterov early in the 1980s [27].

6.2 NAGmethod as a corrected semi-implicit scheme

After simple calculations, we can rewrite Algorithm 1 as an equivalent form

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γk+1 − γk

αk
= μ − γk,

yk − xk
αk

= γk

γk+1
(vk − yk),

vk+1 − vk

αk
= μ

γk+1
(yk − vk) − 1

γk+1
∇ f (yk),

(96)

where in addition we update xk+1 satisfying

f (xk+1) ≤ f (yk) − 1

2L
‖∇ f (yk)‖2∗ . (97)

Surprisingly, (96) formulates a semi-implicit discretization for ourNAGflow (56)with
a correction step (97) and an explicit discretization for the Eq. (54) of γ . Similarly
to (91), we can adopt the gradient descent step which promises (97).

Based on subtle algebraic calculations of the estimate sequence, Nesterov [29,
Chapter 2] proved the convergence rate of Algorithm 1. In the following, we give an
alternative proof by using the Lyapunov function (74).

Theorem 7 Assume that f ∈ S1,1
μ,L with 0 ≤ μ ≤ L < ∞. If Lα2

k = γk+1, then for
Algorithm 1, i.e., the scheme (96) together with (97), we have 0 < αk ≤ 1 and

Lk+1 ≤ (1 − αk)Lk, k ∈ N, (98)

where Lk is defined by (74). Consequently for all k ≥ 0,

Lk ≤ L0 × min

⎧⎨
⎩

4L

(
√

γ0 k + 2
√
L)2

,

(
1 −

√
min{γ1, μ}

L

)k
⎫⎬
⎭ . (99)

Moreover, for all k ≥ 1,

Lk ≤ Cγ0,L × min

⎧
⎨
⎩

4

k2
,

(
1 −

√
min{γ1, μ}

L

)k−1
⎫
⎬
⎭ , (100)

123



From differential equation solvers to accelerated… 763

where Cγ0,L has been defined in (89).

Proof Let us first prove (98). By (96), we find

⎧⎪⎪⎨
⎪⎪⎩

vk = yk + γk+1

αkγk
(yk − xk),

vk+1 = yk + 1 − αk

αk
(yk − xk) − αk

γk+1
∇ f (yk),

and a direct computation gives

γk+1

2

∥∥vk+1 − x∗∥∥2 − γk

2
(1 − αk)

∥∥vk − x∗∥∥2

= αk

(〈∇ f (yk), x
∗ − yk

〉+ μ

2

∥∥x∗ − yk
∥∥2)

+ (1 − αk)
(
〈∇ f (yk), xk − yk〉 + μ

2
‖xk − yk‖2

)

+ α2
k

2γk+1
‖∇ f (yk)‖2∗ − μ(1 − αk)

2αkγk
(γk + μαk) ‖yk − xk‖2 .

Dropping the negative term −‖yk − xk‖2 and using the μ-convexity of f imply that

γk+1

2

∥∥vk+1 − x∗∥∥2 − γk

2
(1 − αk)

∥∥vk − x∗∥∥2

≤ αk
(
f (x∗) − f (yk)

)+ (1 − αk) ( f (xk) − f (yk)) + α2
k

2γk+1
‖∇ f (yk)‖2∗ ,

and we get the inequality

Lk+1 − (1 − αk)Lk ≤ f (xk+1) − f (yk) + α2
k

2γk+1
‖∇ f (yk)‖2∗ .

Consequently, by (97) and the relation Lα2
k = γk+1, the right hand side of the above

inequality is negative, which proves (98).
In this case, we modify (79) as follows

ρ0 = 1, ρk :=
k−1∏
i=0

(1 − αi ), k ≥ 1, (101)

then by (98) it is clear that Lk ≤ ρkL0, and invoking Lemma B1 proves (99). As the
proof of (100) is very similar with that of (88), we omit the details here and conclude
the proof of this theorem. ��
Remark 4 Similar to our corrected schemes (83) and (91), NAG method (i.e., Algo-
rithm 1) generates a three-term sequence {(xk, yk, vk)} as well. If μ = 0, then they
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share the same convergence rate bound

Lk ≤ 4LL0

(
√

γ0 k + 2
√
L)2

,

and when γ0 = μ > 0, we have

Lk ≤ L0 ×
{

(1 −√μ/L)k, for NAG method,

(1 +√μ/L)−k, for (91) and (83) .
(102)

In view of the trivial fact

1 − ε = 1

1 + ε
− ε2

1 + ε
, ε = √μ/L ≤ 1,

we see the rates in (102) are asymptotically the same and NAG method can achieve a
slightly better convergence rate. However, we note that they share the same computa-
tional complexity

O
(
min

{√
L/ε,

√
L/μ · | ln ε|}

)
,

which is optimal, in the sense that [29] it achieves the complexity lower bound of
first-order algorithms for the function class S1,1

μ,L with 0 ≤ μ ≤ L < ∞. ��
Remark 5 Unlike the gradient descent method, the function value f (xk) of accelerated
gradient methods may not decrease in each step. It is the discrete Lyapunov function
Lk that is always decreasing; see (86), (92) and (98). ��
Remark 6 To reduce the function value, one can adopt the restating strategy [31].
Specifically, given (γ0, v0, x0), if f (xk) is increasing after k-iteration, then set k = 0
and restart the iteration process with another initial guess (γ̃0, ṽ0, x̃0). By Theorems 5,
6 and 7, when f ∈ S1,1

0,L and γ0 = L, v0 = x0, we only have the sublinear convergence
rate

f (xk) − f (x∗) ≤ 4

k2

(
f (x0) − f (x∗) + L

2

∥∥x0 − x∗∥∥2
)
≤ 4L

k2
∥∥x0 − x∗∥∥2 ,

(103)

where we used (4), which promises

f (x0) − f (x∗) ≤ L

2

∥∥x0 − x∗∥∥2 .

Additionally, assume f satisfies the quadratic growth condition with σ > 0:

f (x) − f (x∗) ≥ σdist2(x, argmin f ) ∀ x ∈ V ,
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where dist(x, argmin f ) = infx∗∈argmin f ‖x − x∗‖. As (103) holds for all x∗ ∈
argmin f , we have immediately that

f (xk) − f (x∗) ≤ 4L

k2
dist2(x, argmin f ) ≤ 4L

σk2
( f (x0) − f (x∗)).

Therefore, as analyzed in [30], if we consider fixed restart technique [31] every k steps,
then after N = nk steps we will get

f (xN ) − f (x∗) ≤
(
4L

σk2

)n
( f (x0) − f (x∗)).

Evidently, the optimal choice k# = e
√
4L/σ yields the linear rate

f (xN ) − f (x∗) ≤ e−2N/k# ( f (x0) − f (x∗)).

If the parameter σ is unknown, one can use the adaptive restart technique [31].
When f is quadratic and convex, changing γk from L toμ periodically will smooth-

ing out error in different frequencies and can further optimize the constant in front
of the accelerated rate. That is, the dynamically changing parameter {γk} hopefully
outperforms the fixed one γk = μ. For general nonlinear convex functions, a rigorous
justification of the restart strategy is under investigation. ��

7 Composite convex optimization

In this part we mainly focus on the composite optimization

min
x∈Q f (x) := min

x∈Q [h(x) + g(x)] , (104)

where Q ⊆ V is a simple closed convex set, h ∈ S1,1
μ,L(Q) with 0 ≤ μ ≤ L < ∞ and

g : V → R ∪ {+∞} is proper, closed and convex, and Q ∩ dom g �= ∅. In general
g is not differentiable but its subdifferential ∂g exists as a set-valued function. More
precisely, the subdifferential ∂g(x) of g at x is defined by that

∂g(x) := {p ∈ V ∗ : g(y) ≥ g(x) + 〈p, y − x〉 ∀ y ∈ V
}
. (105)

Remark 7 For the case that h ∈ S1,1
0,L(Q) and g is μ-strongly convex with μ ≥ 0, we

can split h + g as (h(x) + μ
2 ‖x‖2) + (g(x) − μ

2 ‖x‖2), which reduces to our current
assumption for (104). ��

We shall apply our ODE solver approach to the problem (104). The first step is to
generalize the dynamical system (56) to the current nonsmooth setting. Basically, we
set F = f + iQ with iQ being the indicator function of Q and obtain a differential
inclusion forminimizing F on V , which is equivalent tominimize f over Q. After that,

123



766 H. Luo, L. Chen

optimization methods (see Algorithms 2 and 4) for solving the original problem (104)
with the accelerated convergence rate

O
(
min

{
L/k2, (1 +√μ/L)−k})

are proposed from numerical discretizations of the continuous model (106). This is
a proof of the effective and usefulness of our NAG flow model (106) and the ODE
solver approach, by which we can construct new accelerated methods easily.

7.1 Continuousmodel

For minimizing a nonsmooth function F over V , our NAG flow (56) becomes a
differential inclusion

{
x ′ = v − x,

γ v′ ∈ μ(x − v) − ∂F(x).
(106)

To ensure solution existence, suitable initial conditions shall be imposed later. Corre-
spondingly, the second-order ODE (57) reads as a second-order differential inclusion

γ x ′′ + (μ + γ )x ′ + ∂F(x) � 0. (107)

As the subdifferential ∂F is a set-valued maximal monotone operator, classical C2

solution to (107) may not exist because discontinuity can occur in x ′. Therefore, the
concept of energy-conserving solution has been introduced in [15,32,36].

Let us assume the initial data

x(0) = x0 ∈ domF and x ′(0) = x1 ∈ TdomF (x0), (108)

where TdomF (x0) denotes the tangent cone of domF at x0:

TdomF (x0) := ∪
τ>0

τ(x0 − domF).

In addition, we shall introduce some vector-valued functional spaces. Given any inter-
val I ⊂ R, let M(I ; V ) be the space of V -valued Radonmeasures on I ; for anym ∈ N

and 1 ≤ p ≤ ∞, Wm,p(I ; V ) denotes the standard V -valued Sobolev space [21]; the
space of all V -valued functions with bounded variation is defined by BV (I ; V ) [4].
Also,Wm,p

loc (I ; V ) and BVloc(I ; V ) consist of all the setsWm,p(ω; V ) and BV (ω; V )

respectively, where ω ⊂ I is any compact subset.

Definition 1 We call x : [0,∞) → V an energy-conserving solution to (107) with
initial data (108) if it satisfies the following.

1. x ∈ W 1,∞
loc (0,∞; V ), x(0) = x0 and x(t) ∈ domF for all t > 0.

2. x ′ ∈ BVloc([0,∞); V ), x ′(0+) = x1.
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3. For almost all t > 0, there holds the energy equality:

F(x(t)) + γ (t)

2

∥∥x ′(t)
∥∥2 +

∫ t

0

μ + 3γ (s)

2

∥∥x ′(s)
∥∥2 ds = F(x0) + γ0

2
‖x1‖2 .

4. There exists some ν ∈ M(0,∞; V ) such that

γ x ′′ + (μ + γ )x ′ + ν = 0

holds in the sense of distributions, and for any T > 0, we have

∫ T

0

(
F(y(t)) − F(x(t))

)
dt ≥ 〈ν, y − x〉C([0,T ];V ) for all y ∈ C([0, T ]; V ).

In [25], the problem (107) has been extended to a general case

γ x ′′ + (μ + γ )x ′ + ∂F(x) � ξ,

where ξ stands for small perturbation. Therefore, according to [25, Theorem 2.1], we
have the existence of an energy-conserving solution to (107) and by [25, Theorems
2.2 and 2.3], we obtain the exponential decay, which is a nonsmooth version of (60).

Theorem 8 AssumeV is a finite dimensional Hilbert space. In the sense of Definition 1,
the differential inclusion (107) admits an energy-conserving solution x : [0,∞) → V
satisfying

F(x(t)) − F(x∗) + γ (t)

2

∥∥x(t) + x ′(t) − x∗∥∥2 ≤ 2L0e
−t , (109)

for almost all t > 0, where L0 := F(x0) − F(x∗) + γ0
2 ‖x0 + x1 − x∗‖2.

Remark 8 If additionally domF = V , then x ∈ W 2,∞
loc (0,∞; V ) ∩ C1([0,∞); V )

and (109) holds for all t > 0. ��

7.2 An APGM for unconstrained optimization

Let us first consider the unconstrained case Q = V , i.e.,

min
x∈V f (x) := min

x∈V [h(x) + g(x)] , (110)

where f ∈ S1,1
μ,L with 0 ≤ μ ≤ L < ∞ and g : V → R ∪ {+∞} is a properly closed

and convex function and possibly nonsmooth.

123



768 H. Luo, L. Chen

7.2.1 Gradient mapping

To treat the nonsmooth part g, we introduce the tool of gradient mapping. Following
[29, Chapter 2], given any η > 0, the composite gradient mapping G f (x, η) of f at x
is defined by that

G f (x, η) := x − S f (x, η)

η
x ∈ V , (111)

where S f (x, η) := proxηg(x − η∇h(x)) and the proximal operator proxηg has been
defined by (8). Note that S f (x, η) is clearly well-defined and so is G f (x, η).

It is well known [33,35] that

x − proxηg(x)

η
∈ ∂g(proxηg(x)), (112)

which yields the fact

G f (x, η) − ∇h(x) ∈ ∂g(S f (x, η)). (113)

From this we conclude that the fixed-point set of S f (·, η) is argmin f . Indeed, x =
S f (x, η) if and only if 0 ∈ ∂ f (x). We also observe from (113) that the gradient
mapping (111) is defined reversely from the proximal-gradient step for minimizing
f = h + g, i.e.,

S f (x, η) − x

η
∈ −∇h(x) − ∂g(S f (x, η))

= −G f (x, η).

Hence it plays the role of the gradient ∇ f in the smooth case. Particularly, if g = 0,
then G f (x, η) = ∇h(x) and S f (x, η) = x − η∇h(x) is nothing but a gradient step.

To move on, we present an auxiliary lemma, which is a key ingredient for our
convergence analysis. As we will fix η = 1/L , for simplicity, we set G f (x) :=
G f (x, 1/L) and S f (x) := S f (x, 1/L).

Lemma 4 Assume f = h + g, where h ∈ S1,1
μ,L with 0 ≤ μ ≤ L < ∞ and g : V →

R ∪ {+∞} is properly closed and convex. Then for any x, y ∈ V ,

f (y) ≥ f (S f (x)) + 〈G f (x), y − x
〉+ μ

2
‖y − x‖2 + 1

2L

∥∥G f (x)
∥∥2 . (114)

Proof Since h ∈ S1,1
μ,L , applying (2) and (4) gives

h(x) − h(y) + 〈∇h(x), y − x〉 ≤ − μ

2
‖x − y‖2 ,

h(S f (x)) − h(x) + 〈∇h(x), x − S f (x)
〉 ≤ L

2

∥∥S f (x) − x
∥∥2 ,
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which implies that

h(y) ≥ h(S f (x, η)) + 〈∇h(x), y − S f (x)
〉+ μ

2
‖y − x‖2 − 1

2L

∥∥G f (x)
∥∥2 .

Observing (113), we get

g(y) ≥ g(S f (x)) + 〈G f (x) − ∇h(x), y − S f (x)
〉
.

Summing the above two inequalities and using the split

〈
G f (x), y − S f (x)

〉 = 〈G f (x), y − x
〉+ 〈G f (x), x − S f (x)

〉

= 〈G f (x), y − x
〉+ 1

L

∥∥G f (x)
∥∥2 ,

we finally arrive at (114) and end the proof of this lemma. ��
Remark 9 For a fixed x , the right hand side of (114) defines a quadratic approximation
of f at x , and it is strongly reminiscent of the quadratic lower bound approximation
(2) for the smooth case. However, compared to (2), the constant is shifted from f (x)

to a lower value f (S f (x))+ 1
2L

∥∥G f (x)
∥∥2. The first order part is G f (x) instead of the

subgradient at x . The quadratic part μ
2 ‖y − x‖2 is due to the μ-convexity. ��

7.2.2 The proposed method

Based on the corrected semi-implicit scheme (91) for NAG flow (56), it is possible to
generalize it to solve the differential inclusion (106). We simply replace the gradient
∇ f (yk) with the gradient mapping G f (yk) and set the correction as xk+1 = S f (yk).
More precisely, consider

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk − xk
αk

= vk − yk,

xk+1 = S f (yk),

vk+1 − vk

αk
= μ

γk
(yk − vk+1) − 1

γk
G f (yk),

γk+1 − γk

αk
= μ − γk+1.

(115)

Once xk+1 = S f (yk) = proxηg(yk − η∇h(yk)) is obtained, we can update vk+1
with known datum xk, yk, vk and xk+1. Thus in each iteration, (115) only calls the
proximal operation proxηg once.

We still use the step size Lα2
k = γk(1 + αk) and summarize the semi-implicit

scheme (115) in Algorithm 2, which is called semi-implicit APGM (Semi-APGM for
short). Also, the convergence rate is derived via the discrete Lyapunov function (74).
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Algorithm 2 Semi-APGM for solving minx∈V [h(x) + g(x)]
Input: x0, v0 ∈ V , γ0 > 0 and η = 1/L .
1: for k = 0, 1, . . . do
2: Compute αk > 0 such that Lα2k = γk

(
1 + αk

)
.

3: Update γk+1 = γk + μαk

1 + αk
.

4: Set yk = xk + αkvk

1 + αk
and wk = γkvk + μαk yk

γk + μαk
.

5: Update xk+1 = proxηg(yk − η∇h(yk )).

6: Set vk+1 = wk + γk

γk+1

xk+1 − yk
αk

.

7: end for

Theorem 9 For Algorithm 2, we have

Lk+1 ≤ Lk

1 + αk
∀ k ∈ N, (116)

where Lk = f (xk) − f (x∗) + γk
2 ‖vk − x∗‖2, and both (87) and (88) hold true here.

Proof The proof of (116) is very similar to that of (92). Replacing xk+1 and its gradient
∇ f (xk+1) in (80) respectively with yk and G f (yk), we can proceed as the proof of
Lemma 3 and use Lemma 4 to obtain

L̂k − Lk ≤ − αkL̂k + (1 + αk) ( f (yk) − f (xk+1))

+ α2
k

2γk

∥∥G f (yk)
∥∥2 − 1 + αk

2L

∥∥G f (yk)
∥∥2 ,

(117)

where L̂k is defined by (84). Thanks to the relation Lα2
k = γk(1 + αk), the second

line of (117) vanishes, and inserting the identity f (yk) − f (xk+1) = L̂k − Lk+1 into
(117) gives (116). Based on this, it is not hard to see that both (87) and (88) hold true.
This finishes the proof of this theorem. ��

We mention that with another choice

Lα2
k = μα2

k + γk(1 + αk),

we can drop the sequence {vk} from (115). The procedure is not straightforward but
very similar to that of Nesterov’s optimal method in [29, page 80]. We omit the details
and only list the following algorithm.
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Algorithm 3 Simplified Semi-APGM
Input: x0, y0 ∈ V , γ0 > 0 and η = 1/L .
1: for k = 0, 1, . . . do
2: Compute αk > 0 such that Lα2k = μα2k + γk (1 + αk ).

3: Update γk+1 = γk + μαk

1 + αk
and set βk = Lαk

γk+1(1+αk )
.

4: Set yk+1 = xk + βk (xk+1 − xk ).
5: Update xk+1 = proxηg(yk − η∇h(yk )).
6: end for

This can be viewed as a generalization of [29, Chapter 2, Constant Step Scheme,
II] to problem (110). Particularly, for convex case μ = 0, it is very close to FISTA
[12]. Both of them share the same spirit: applying one proximal gradient step first
and then using some extrapolation formulae. The difference comes only from the use
of the two sequences {αk} and {βk}. We also claim that Algorithm 3 has the same
accelerated convergence rate as Algorithm 2, i.e., O(min(L/k2, (1+ √

μ/L)−k)). In
contrast FISTA is designed for μ = 0 and has only the sublinear rate O(L/k2).

We mention that, accelerated proximal gradient methods for solving (110) with
only one evaluation of proxηg in each iteration can be found in [38] (only for strongly
convex case) and [24, Chapter 2, Algorithm 2.2] (for both convex and strongly convex
cases).

Both Algorithms 2 and 3 cannot be applied directly to the general constraint
case (104). The main issue comes from the definition (111) of the gradient map-
ping G f (x, η), where we impose the restriction x ∈ Q and calculate the proximal
operator proxηg over Q to obtain S f (x) ∈ Q. For both two algorithms, we shall com-
pute xk+1 = S f (yk) = proxηg(yk −η∇h(yk)). But the sequence {yk} in Algorithms 2
and 3 may be outside the constraint set. This is not acceptable because ∇h(yk) might
not exist: for instance, Q = [0,∞) and h is the entropy function.

The original FISTA [12] and the methods in [38] and [24, Chapter 2, Algorithm
2.2] mentioned above, cannot be applied to the constrained problem (104) either. This
stimulates us to propose a new operator splitting scheme to conquer this problem.

7.3 An accelerated forward–backwardmethod for constrained optimization

We now go back to the constrained problem (104). As mentioned above, the tool of
gradient mapping is not convenient for us to handle this case. To avoid using it, we
utilize the separable structure of f = h + g and apply explicit and implicit schemes
for h and g, respectively. This is the so-called operator splitting technique in ODE
solvers and is also known as the forward-backward method.
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Let us start from the predictor-corrector scheme (83) and rewrite it as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk = xk + αkvk

1 + αk
, wk = γkvk + μαk yk

γk + μαk
,

vk+1 = argmin
v∈V

{
〈∇ f (yk), v〉 + γk + μαk

2αk
‖v − wk‖2

}
,

xk+1 = xk + αkvk+1

1 + αk
.

(118)

For minimizing f = h + g over Q, we modify the above method as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yk = xk + αkvk

1 + αk
, wk = γkvk + μαk yk

γk + μαk
,

vk+1 = argmin
v∈Q

{
g(v) + 〈∇h(yk), v〉 + γk + μαk

2αk
‖v − wk‖2

}
,

xk+1 = xk + αkvk+1

1 + αk
,

(119)

where x0, v0 ∈ Q and the parameter sequence {γk} comes from the implicit discretiza-
tion (73) of the Eq. (54). Clearly, as convex combinations are used, the method (119)
preserves the three-term sequence {(xk, yk, vk)} in Q and it requires the proximal
computation of g over Q only once in each iteration.

We choose Lα2
k = γk(1 + αk) as before and rewrite (119) in Algorithm 4, which

is called semi-implicit accelerated forward-backward (Semi-AFB for short) method.

Algorithm 4 Semi-AFB method for solving minx∈Q [h(x) + g(x)]
Input: x0, v0 ∈ Q, γ0 > 0 and L > 0.
1: for k = 0, 1, . . . do
2: Compute αk > 0 such that Lα2k = γk

(
1 + αk

)
.

3: Update γk+1 = γk + μαk

1 + αk
.

4: Set yk = xk + αkvk

1 + αk
and wk = γkvk + μαk yk

γk + μαk
.

5: Update vk+1 = argmin
v∈Q

{
g(v) + 〈∇h(yk ), v〉 + γk + μαk

2αk
‖v − wk‖2

}
.

6: Update xk+1 = xk + αkvk+1

1 + αk
.

7: end for

In [41], Tseng considered problem (104) only with convex assumption, i.e.,μ = 0,
and proposed an APGM that possesses the rate O(L/k2). By using the technique of
estimate sequence, Nesterov [28] presented an accelerated method for solving (104)
with the assumption that h is L-smooth over Q and g is μ-strongly convex with
μ ≥ 0. Both our Algorithm 4 and Nesterov’s method generate a three-term sequence
{(xk, yk, vk)} and have the same accelerated rate O(min(L/k2, (1+ √

μ/L)−k)); see
[28, Theorem 6] and our Theorem 10. However, as mentioned in [12], the later used an
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accumulated history of the past iterations to build recursively a sequence of estimate
functions, and in each iteration, to update xk+1 and vk+1, Nesterov’s method in [28]
calls proxg over Q twice.

Below, we shall establish the convergence rate of Algorithm 4 via the analysis of
a Lyapunov function. It is well known [28, Eq (2.9)] that the first-order optimality
condition for vk+1 in (119) is the variational inequality

〈
∇h(yk) + γk + μαk

αk
(vk+1 − wk) + pk+1, x − vk+1

〉
≥ 0 ∀ x ∈ Q,

where pk+1 ∈ ∂g(vk+1). Expanding wk , we observe the relation

γk (vk+1 − vk, vk+1 − x)

≤ μαk (yk − vk+1, vk+1 − x) − αk 〈∇h(yk) + pk+1, vk+1 − x〉 , (120)

where x ∈ Q is arbitrary.

Theorem 10 For Algorithm 4, we have

Lk+1 ≤ Lk

1 + αk
∀ k ∈ N, (121)

where Lk = f (xk) − f (x∗) + γk
2 ‖vk − x∗‖2, and both (87) and (88) hold true here.

Proof As before, we calculate the difference

Lk+1 − Lk = f (xk+1) − f (xk) + αk

2
(μ − γk+1)

∥∥vk+1 − x∗∥∥2

+ γk
(
vk+1 − vk, vk+1 − x∗)− γk

2
‖vk+1 − vk‖2 .

Thanks to (120), we have

γk
(
vk+1 − vk, vk+1 − x∗)

≤ μαk
(
yk − vk+1, vk+1 − x∗)− αk

〈∇h(yk) + pk+1, vk+1 − x∗〉 . (122)

where pk+1 ∈ ∂g(vk+1).
By Lemma 1, the first term in (122) is split as follows

2μαk
(
yk − vk+1, vk+1 − x∗)

= μαk

(∥∥yk − x∗∥∥2 − ‖yk − vk+1‖2 − ∥∥vk+1 − x∗∥∥2) .

The gradient term in (122) is more subtle. Firstly, by convexity of g, we have

− αk
〈
pk+1, vk+1 − x∗〉 ≤ −αk

(
g(vk+1) − g(x∗)

)

= −αk
(
g(xk+1) − g(x∗)

)− αk (g(vk+1) − g(xk+1)) ,

123



774 H. Luo, L. Chen

and secondly, according to the update for yk (see step 4 in Algorithm 4), we find

− αk
〈∇h(yk), vk+1 − x∗〉

= −αk 〈∇h(yk), vk+1 − vk〉 − αk
〈∇h(yk), vk − x∗〉

= −αk 〈∇h(yk), vk+1 − vk〉 − 〈∇h(yk), yk − xk〉 − αk
〈∇h(yk), yk − x∗〉 .

As h is μ-strongly convex on Q, by the fact {(xk, yk, vk)} ⊂ Q, it follows that

− 〈∇h(yk), yk − xk〉 − αk
〈∇h(yk), yk − x∗〉

≤ h(xk) − h(yk) − μ

2
‖xk − yk‖2 − αk

(
h(yk) − h(x∗)

)− μαk

2

∥∥x∗ − yk
∥∥2

= (1 + αk) (h(xk+1) − h(yk)) − αk
(
h(xk+1) − h(x∗)

)− μαk

2

∥∥x∗ − yk
∥∥2

+ h(xk) − h(xk+1) − μ

2
‖xk − yk‖2 .

Therefore, collecting all the estimates and dropping surplus negative terms related to
−‖xk − yk‖2 and −‖yk − vk+1‖2, we get

Lk+1 − Lk

≤ −αkLk+1 + (1 + αk) (h(xk+1) − h(yk)) − αk 〈∇h(yk), vk+1 − vk〉
− γk

2
‖vk+1 − vk‖2 + g(xk+1) − g(xk) − αk (g(vk+1) − g(xk+1)) . (123)

Let us consider the additional terms in (123). In view of (4), we have

h(xk+1) − h(yk) ≤ 〈∇h(yk), xk+1 − yk〉 + L

2
‖xk+1 − yk‖2 .

Thanks to the extrapolation step for xk+1 (see step 6 in Algorithm 4), we find a crucial
relation

xk+1 − yk = αk

1 + αk
(vk+1 − vk),

which gives that

(1 + αk) (h(xk+1) − h(yk)) − αk 〈∇h(yk), vk+1 − vk〉 − γk

2
‖vk+1 − vk‖2

≤ Lα2
k

2(1 + αk)
‖vk+1 − vk‖2 − γk

2
‖vk+1 − vk‖2 = 0,

as Lα2
k = γk(1 + αk). Moreover, since xk+1 is a convex combination of xk and vk+1,

the estimate follows

g(xk+1) − g(xk) − αk (g(vk+1) − g(xk+1))

= (1 + αk)g(xk+1) − g(xk) − αkg(vk+1) ≤ 0.
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Plugging this and the previous inequality into (123) gives

Lk+1 − Lk ≤ −αkLk+1,

which establishes (121).
By the relation Lα2

k = γk(1+ αk) and the contraction (121), it is clear that the two
estimates (87) and (88) hold true. This completes the proof of this theorem. ��
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A Spectral analysis

Proof of Theorem 1 Let us start from the scalar case

R =
(−a c

−b −d

)
,

where a, b, c, d ≥ 0 and tr R < 0 < det R. Set

M =
(−a 0

−b −d

)
, N =

(
0 c
0 0

)
.

By direct computations we have

E(α, R) := (I − αM)−1(I + αN ) = 1

δ

(
1 + dα cα(1 + dα)

−bα 1 + aα − bcα2

)
, (124)

where δ := (1 + aα)(1 + dα). Since tr R < 0, we see that

0 < det E(α, R) = 1

δ
= 1

1 + |tr R| α + adα2 < 1.

Note that any eigenvalue θ of E(α, R) satisfies

θ2 − tr E(α, R)θ + det E(α, R) = 0. (125)

We now arrive at the following lemma, which says the spectrum of E(α, R) can be
transformed to the circle |θ | = √

det E(α, R) < 1, with proper α. ��
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Lemma 5 Assume

R =
(−a c

−b −d

)
,

with a, b, c, d ≥ 0 such that tr R < 0 < det R. Let E(α, R) be defined by (124). If
α > 0 satisfies

|tr R| − 2
√
det R ≤ bc α ≤ |tr R| + 2

√
det R, (126)

then we have

ρ(E(α, R)) = 1√
1 + |tr R| α + adα2

< 1.

Proof If Δ = |tr E(α, R)|2 − 4 det E(α, R) ≤ 0, then any solution to (125) satisfies
that |θ | = √

det E(α, R) and the conclusion follows. By direct calculation, Δ ≤ 0 is
equivalent to

√
δ − 1 ≤ α

√
det R ≤ √

δ + 1.

Square the inequality α
√
det R − 1 ≤ √

δ and cancel one α to get the upper bound in
(126). The lower bound can be proved similarly. ��

We now in the position of establishing Theorem 1. We first consider G = GHB , for
which we have

E(α,G) = 1

1 + 2α

(
(1 + 2α)I α(1 + 2α)I
−αA/μ I − Aα2/μ

)
.

It is clear that θ ∈ σ(E(α,G)) ⇔ θ ∈ σ(E(α, R(λ))), where E(α, R(λ)) is defined
by (124) with

R(λ) =
(

0 1
−λ/μ −2

)
, λ ∈ σ(A).

As |tr R(λ)| ≤ 2
√
det R(λ), by Lemma 5, if

0 < α ≤ 2/
√

κ(A), (127)

then we can obtain

ρ(E(α,G)) = max
λ∈σ(A)

ρ(E(α, R(λ))) = 1√
1 + 2α

.
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Similarly, for G = GNAG with condition (127), we can establish

ρ(E(α,G)) = max
λ∈σ(A)

ρ(E(α, R(λ))) = 1√
1 + 2α + α2

≤ 1√
1 + 2α

.

Consequently, for both two cases, taking α = 2/
√

κ(A) yields the spectrum bound

ρ(E(α,G)) ≤ 1√
1 + 4/

√
κ(A)

≤ 1

1 + 1/
√

κ(A)
.

This concludes the proof of Theorem 1. ��
Proof of Theorem 2 Observe that Ẽk is similar with

(
I O
O γk I

)−1 ( I O
O γk+1 I

)
E(αk,G(γk+1)) = Hk

1 + αk
,

where

Hk =
(

I αk I
−Aαk/γk I − Aα2

k/γk

)
.

To prove (51), it is sufficient to verify ρ (Hk) = 1.
Given any eigenvalue θ ∈ σ(Hk), it solves

θ2 + (λα2
k/γk − 2)θ + 1 = 0,

with some λ ∈ σ(A) ⊂ [0, L]. By (49), {γk} is decreasing and thus γk ≤ γ0 = L .
According to our choice Lα2

k = γk(1 + αk), we have 0 < αk ≤ 2 and moreover
0 < λα2

k/γk ≤ Lα2
k/γk = 1 + αk ≤ 3. This implies Δ = (λα2

k/γk − 2)2 − 4 ≤ 0 for
all λ ∈ σ(A). Therefore, we conclude that |θ | = 1 for all θ ∈ σ(Hk), which proves
ρ (Hk) = 1 and thus establishes (51).

Thanks to Lemma B2, there holds

1

(k + 1)2
≤ γk

γ0
=

k−1∏
i=0

1

1 + αi
≤ 4

(k + 2)2
.

This proves (52) and completes the proof of Theorem 2. ��

B Decay rates

Lemma B1 Let γ0 > 0 andμ ≥ 0 be given and assume there is a real positive sequence
{Lk} such that Lk ≥ μ. Define {(αk, γk)} by that

{
Lkα

2
k = γk+1, αk > 0,

γk+1 = (1 − αk)γk + μαk .
(128)
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Then we have γk > 0, 0 < αk ≤ 1 and αk ≥ √
min{γ1, μ}/L, where L := supk∈N Lk.

Moreover, for all k ≥ 1,

k−1∏
i=0

(1 − αi ) ≤ min

⎧⎨
⎩4
(
2 +

k−1∑
i=0

√
γ0

Li

)−2

,

(
1 −

√
min{γ1, μ}

L

)k
⎫⎬
⎭ , (129)

and if μ = 0, then we have the lower bound

k−1∏
i=0

(1 − αi ) ≥
(
1 +

k−1∑
i=0

√
γ0

Li

)−2

. (130)

Proof Let us first check that 0 < αk ≤ 1 and γk > 0. Since γ0 > 0, by (128) we have

L0α
2
0 = γ1 = (1 − α0)γ0 + μα0,

from which we claim that 0 < α0 ≤ 1. Thus by the second step in (128) we have
γ1 > 0. A sequential argument implies that 0 < αk ≤ 1 and γk > 0 for all k ≥ 0.

It is not hard to find the fact: if γ0 > μ, then μ < γk+1 < γk and if γ0 < μ, then
γk < γk+1 < μ. Particularly, if γ0 = μ, then γk = μ. Based on this observation and
the fact Lk ≤ L , we conclude that αk ≥ √

min{γ1, μ}/L and thus

k−1∏
i=0

(1 − αi ) ≤
(
1 −

√
min{γ1, μ}

L

)k

.

Next, let us prove the estimate

ρk ≤ 4

(
2 +

k−1∑
i=0

√
γ0

Li

)−2

, (131)

where ρk is defined by (101). We start from the trivial equality

1√
ρk+1

− 1√
ρk

=
√

ρk − √
ρk+1√

ρkρk+1
= 1 − √

1 − αk√
ρk+1

= αk√
ρk+1(1 + √

1 − αk)
,

(132)

where we used the relation ρk+1 = ρk(1− αk). By (128), for any i ≥ 0, it holds that

γi+1 = (1 − αi )γi + μαi ≥ (1 − αi )γi , (133)
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and multiplying the above inequality from i = 0 to i = k − 1 gives ρk ≤ γk/γ0.
Plugging this into (132) and using the relation Lkα

2
k = γk+1 and the fact 0 < αk ≤ 1

imply

1√
ρk+1

− 1√
ρk

≥
√

γ0αk√
γk+1(1 + √

1 − αk)
≥

√
γ0

2
√
Lk

,

which further indicates that

1√
ρk

− 1√
ρ0

≥
k−1∑
i=0

√
γ0

2
√
Li

.

Therefore, a simple calculation proves (131) and concludes the proof of this lemma.
Forμ = 0,we have the relationρk = γk/γ0, and proceeding as the above derivation,

it is not hard to establish the lower bound (130). This concludes the proof of this lemma.
��

Similarly, we can establish the following result, the proof of which is omitted for
simplicity.

Lemma B2 Let γ0 > 0 andμ ≥ 0 be given and assume there is a real positive sequence
{Lk} such that Lk ≥ μ. Define {(αk, γk)} by that

{
γk+1 = γk + αk(μ − γk+1),

Lkα
2
k = γk(1 + αk), αk > 0.

Then we have γk > 0 and αk ≥ √
min{γ0, μ}/L, where L := supk∈N Lk. Moreover,

for all k ≥ 1,

k−1∏
i=0

1

1 + αi
≤ min

⎧
⎨
⎩4
(
2 +

k−1∑
i=0

√
γ0

Li

)−2

,

(
1 +

√
min{γ0, μ}

L

)−k
⎫
⎬
⎭ ,

and if μ = 0, then we have the lower bound

k−1∏
i=0

1

1 + αi
≥
(
1 +

k−1∑
i=0

√
γ0

Li

)−2

.
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