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A PRIMAL-DUAL FLOW FOR AFFINE CONSTRAINED CONVEX

OPTIMIZATION

Hao Luo*

Abstract. We introduce a novel primal-dual flow for affine constrained convex optimization prob-
lems. As a modification of the standard saddle-point system, our flow model is proved to possess the
exponential decay property, in terms of a tailored Lyapunov function. Then two primal-dual methods
are obtained from numerical discretizations of the continuous problem, and global nonergodic linear
convergence rate is established via a discrete Lyapunov function. Instead of solving the subproblem
of the primal variable, we apply the semi-smooth Newton iteration to the inner problem with respect
to the multiplier, provided that there are some additional properties such as semi-smoothness and
sparsity. Finally, numerical tests on the linearly constrained l1-l2 minimization and the total-variation
based image denoising model have been provided.
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1. Introduction

We are interested in the linearly constrained minimization problem

min
x∈Rn

f(x) s.t. Ax = b, (1.1)

where (A, b) ∈ Rm×n × Rm and f : Rn → R ∪ {+∞} is proper, closed and convex. Let Ω := Rn × Rm and
introduce the Lagrangian

L(x, λ) := f(x) + 〈λ,Ax− b〉 ∀ (x, λ) ∈ Ω, (1.2)

where 〈·, ·〉 denotes the standard l2-inner product, with ‖·‖ =
√
〈·, ·〉 being the Euclidean norm. Assume (x∗, λ∗)

is a saddle-point of L(x, λ), which means

L(x∗, λ) 6 L(x∗, λ∗) 6 L(x, λ∗) ∀ (x, λ) ∈ Ω,
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and denote by Ω∗ the set of all saddle-points. Any (x∗, λ∗) ∈ Ω∗ satisfies the Karush–Kuhn–Tucker (KKT)
system {

0 = ∇λL(x∗, λ∗) = Ax∗ − b,
0 ∈ ∂xL(x∗, λ∗) = ∂f(x∗) +A>λ∗,

(1.3)

where ∂f(x∗) is the subdifferential of f at x∗.
For the standard model problem (1.1), there are a large body of primal-dual type algorithms that achieve

the fast (ergodic) sublinear rate O(1/k2) with strongly convex condition; see Section 1.2 for a brief review.
Meanwhile, some existing works also focus on the asymptotic convergence from the continuous-time point of
view, i.e., the saddle-point dynamical system [23, 33]{

λ′ = ∇λL(x, λ),

x′ = −∇xL(x, λ).
(1.4)

In this work, we shall modify the conventional model (1.4) and introduce a novel primal-dual flow system
which possesses exponential decay property. New primal-dual algorithms shall be obtained from proper time
discretizations and nonergodic linear convergence rate will be proved via the tool of Lyapunov function.

To move on, let us make some conventions. We say a function g : Rn → R is L-smooth if it has L-Lipschitz
continuous gradient:

‖∇g(x)−∇g(y)‖ 6 L ‖x− y‖ ∀x, y ∈ Rn.

For a properly closed convex function g : Rn → R ∪ {+∞}, it is called µ-convex if there exists µ > 0 such that

g(x) + 〈p, y − x〉+
µ

2
‖y − x‖2 6 g(y),

for all p ∈ ∂g(x). The proximal mapping proxθg : Rn → Rn of g with θ > 0 is defined by

proxθg(x) := (Id + θ∂g)−1(x) = argmin
y∈Rn

{
g(y) +

1

2θ
‖y − x‖2

}
∀x ∈ Rn,

where Id denotes the identity operator. Clearly, if f is µ-convex, then according to (1.2), we claim that L(·, λ)
is also µ-convex and

L(x, λ) +
〈
p+A>λ, y − x

〉
+
µ

2
‖y − x‖2 6 L(y, λ) ∀ p ∈ ∂f(x). (1.5)

1.1. Main results

Following the time rescaling technique from [19, 58], for smooth and µ-convex objective f , we propose a
primal-dual flow {

γx′ = −∇xL(x, λ),

βλ′ = ∇λL(x+ x′, λ),
(1.6)

where γ and β are two nonnegative scaling factors that are governed by γ′ = µ− γ and β′ = −β, respectively.
Compared with the classical one (1.4), our new model (1.6) has two novelties: (i) it introduces two built-in time
rescaling factors that unify the analysis for µ > 0; (ii) the term ∇λL(x + x′, λ) (instead of the standard one
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∇λL(x, λ)) brings stability and reduces the oscillation; see Section 2.3 for an illustrative equilibrium analysis.
Besides, the extra term x′ in ∇λL(x+ x′, λ) has subtle connection with the over-relaxation xk+1 + (xk+1 − xk)
introduced in the primal-dual hybrid gradient (PDHG) method [16]; see Appendix A for a more reasonably
intrinsic explanation.

We then equip the dynamical system (1.6) with a tailored Lyapunov function

E(t) := L(x(t), λ∗)− L(x∗, λ(t)) +
γ(t)

2
‖x(t)− x∗‖2 +

β(t)

2
‖λ(t)− λ∗‖2 , t > 0,

which possesses the exponential decay (cf. Thm. 2.2)

d

dt
E(t) 6 −E(t) =⇒ E(t) 6 e−tE(0), t > 0. (1.7)

From (1.7) follows the estimate L(x(t), λ∗) − L(x∗, λ(t)) 6 e−tE(0), and we can further prove that
|f(x(t))− f(x∗)|+ ‖Ax(t)− b‖ 6 Ce−t; see Corollary 2.3.

We also consider implicit and semi-implicit discretizations for the continuous flow (1.6) (in general nons-
mooth setting) and obtain new primal-dual algorithms, which are close to the (linearized) proximal augmented
Lagrangian method but adopt automatically changing parameters. In addition, instead of solving the subprob-
lem of the primal variable, we apply the semi-smooth Newton (SsN) iteration to the subproblem with respect to
the multiplier, provided that there are some hidden structures such as semi-smoothness and sparsity. By using
a unified discrete Lyapunov function

Ek = L(xk, λ
∗)− L(x∗, λk) +

γk
2
‖xk − x∗‖2 +

βk
2
‖λk − λ∗‖2 ,

we prove the contraction property:

Ek+1 − Ek 6 −αkEk+1 or Ek+1 − Ek 6 −αkEk ∀ k ∈ N,

from which we obtain nonergodic convergence rates of the objective gap |f(xk)− f(x∗)| and the feasibility
residual ‖Axk − b‖. More precisely, the implicit discretization converges with (super) linear rate for convex
objective f and the semi-implicit scheme possesses the rate O(min{L/k, (1 + µ/L)−k}) for the composite case
f = h+ g where h is L-smooth and µ-convex and g is convex (possibly nonsmooth).

1.2. Related works

As one can add the indicator function of the constraint set to the objective and get rid of the linear constraint
in (1.1), the proximal gradient method [7], as well as the accelerated proximal gradient method [6, 20, 58, 59],
can be considered. However, they need projections onto the affine constraint set and are not suitable to handle
the composite case f = h+ g.

Therefore, prevailing algorithms are the augmented Lagrangian method (ALM) [8], the Bregman iteration
[62] and their variants (linearization or acceleration) [45, 47, 48, 72, 75, 76, 82]. Another type of algorithm is
the quadratic penalty method with continuation technique [49, 52]. Among those methods mentioned here, the
fast rate O(1/k2) is mainly in ergodic sense for primal variable and it is rare to see global nonergodic linear
rate, even with strongly convex objectives. More recently, Li, Sun and Toh [53] proposed a (super) linearly
convergent semi-smooth Newton based inexact proximal ALM for linear programming. Later, this method has
been extended to quadratic programming [51, 60].

For the separable case: f(x) = f1(x1) + f2(x2), A = (A1, A2), we have alternating direction method of
multipliers (ADMM) [35, 36] for primal problem and operator splitting methods [29, 30, 65] for dual prob-
lem. For ADMM type methods, the sublinear rate O(1/k2) can be proved under partially strong convexity



4 H. LUO

assumption [70, 74, 77, 78] and global linear rate has been established as well for strongly convex (smooth)
objectives [25, 26, 37]. In addition, (local) linear convergence can be derived from the error bound con-
dition [1, 39, 55, 84, 87]. For a special case A1 = I or A2 = I, there are primal-dual splitting methods
[9, 16, 17, 31, 43, 46, 64, 89]. Generally speaking, we have sublinear rate O(1/k2) for partially strongly convex
case and linear rate for strongly convex case [18, 73, 79]. Moreover, equivalence between primal-dual splitting
methods and ADMM type methods can be found in [13, 61, 85].

On the other hand, ordinary differential equation (ODE) solver approach has been revisited nowadays for
investigating and developing optimization methods. For unconstrained problems, there are heavy ball model [3],
asymptotically vanishing dynamical (AVD) model [71] and their extensions [2, 4, 54, 80, 81]. Besides, Luo and
Chen [58] proposed the so-called Nesterov accelerated gradient flow and later generalized it to [19, 20, 57].

For linearly constrained problem (1.1), apart from the classical first-order saddle-point system (1.4), some
second-order dynamics have been proposed as well. Zeng, Lei and Chen [88] generalized the AVD model and
obtained the decay rate O(t−min{2,2α/3}) via a suitable Lyapunov function. He, Hu and Fang [41] extended the
dynamical system in [88] to separable case. Revisiting the scaled alternating direction method of multipliers
[10], Franca, Robinson and Vidal [34] derived a continuous model which is also related to the AVD model
and proved the decay rate O(1/t2). Yet, none of Zeng et al. [88], He et al. [41] and Franca et al. [34] neither
considered numerical discretizations for their dynamical systems nor presented new optimization algorithms for
the original optimization problem. For general minimax problems, there are some works on dynamical system
approach [22, 56].

Comparing with existing works, we summarize our main contributions as below:

– The continuous primal-dual flow (1.6) adopts built-in time rescaling factors for both convex and strongly
convex cases and has exponential decay rate with respect to a proper Lyapunov function.

– A simple but illustrative equilibrium analysis shows the gain of stability that is benefit from the
modification introduced in (1.6).

– New primal-dual algorithms with automatically changing parameters are obtained from proper time dis-
cretizations of the continuous model and the semi-smooth Newton method is considered for the subproblem
with respect to the multiplier.

– Nonergodic (super) linear convergence rate of the objective gap and feasibility residual is established via
the tool of discrete Lyapunov function.

The rest of this paper is organized as follows. Section 2 starts from the classical saddle-point system and
introduces a new primal-dual flow. Then Sections 3 and 4 consider implicit and semi-implicit discretizations
respectively and establish the (super) linear convergence rates of the resulted primal-dual algorithms. Numerical
performances on the l1-l2 minimization and the total-variation based denoising model are presented in Section 5
and finally, some concluding remarks are given in Section 6.

2. Continuous problems

2.1. The saddle-point system

To present the main idea clearly, let us start from the rescaled saddle-point system{
βλ′ = ∇λL(x, λ),

γx′ = −∇xL(x, λ),
(2.1)

with the initial condition (x(0), λ(0)) = (x0, λ0) ∈ Ω, where γ and β are two artificial time rescaling factors and
satisfy (cf. [19, 58])

γ′ = µ− γ, β′ = −β, (2.2)
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with positive initial condition (γ(0), β(0)) = (γ0, β0). One can easily solve (2.2) to obtain

γ(t) = γ0e
−t + µ(1− e−t) and β(t) = β0e

−t t > 0, (2.3)

which implies γ and β are positive and converge exponentially to µ and 0, respectively.
Assume f ∈ C1

L and define F : R+ × Ω→ Ω by that

F (t, Z) :=

−
1

γ(t)
∇xL(x, λ)

1

β(t)
∇λL(x, λ)

 ∀Z =

(
x
λ

)
∈ Ω.

Then (2.1) can be rewritten as Z ′(t) = F (t, Z(t)) and a direct calculation yields that for all Z, Y ∈ Ω and
0 6 s 6 t,

‖F (t, Z)− F (s, Y )‖ 6 C0(L+ ‖A‖) (|t− s| ‖Z − Z∗‖+ ‖Z − Y ‖) et,

where Z∗ = (x∗, λ∗) ∈ Ω∗ and the bounded positive constant C0 depends only on γ0, β0 and µ. This means F is
locally Lipschitz continuous and according to Proposition 6.2.1 of [40] and Corollary A.2 of [11], the first-order
dynamical system (2.1) exists a unique solution Z = (x, λ) ∈ C1(R+; Ω).

Let V := Ω× R+ × R+ and for any X = (x, λ, γ, β) ∈ V , introduce a Lyapunov function

E(X) := L(x, λ∗)− L(x∗, λ) +
γ

2
‖x− x∗‖2 +

β

2
‖λ− λ∗‖2 . (2.4)

Our goal is to establish the exponential decay property of (2.4) along with the solution trajectory X : R+ → V .
Below, we present a lemma which violates our goal but heuristically motivates us to the right way.

Lemma 2.1. Assume f is L-smooth and µ-convex with µ > 0 and let X = (x, λ, γ, β) : R+ → V be the unique
solution to (2.1) and (2.2), then

d

dt
E(X) 6 −E(X)− γ ‖x′‖2 − 〈Ax′, λ− λ∗〉 . (2.5)

Proof. As discussed above, (x, λ) ∈ C1(R+; Ω) exists uniquely and by (2.1), a direct computation gives

d

dt
E(X) = 〈∇xE(X), x′〉+ 〈∇λE(X), λ′〉+ 〈∇γE(X), γ′〉+ 〈∇βE(X), β′〉

= − 1

γ
〈∇xL(x, λ),∇xL(x, λ∗)〉︸ ︷︷ ︸

I1

+ 〈∇λL(x, λ), λ− λ∗〉 − 〈∇xL(x, λ), x− x∗〉︸ ︷︷ ︸
I2

−β
2
‖λ− λ∗‖2 +

µ− γ
2
‖x− x∗‖2︸ ︷︷ ︸

I3

:= I1 + I2 + I3.

We split ∇xL(x, λ∗) = ∇xL(x, λ)−A>(λ− λ∗) and use the relation γx′ = −∇xL(x, λ) to get

I1 =− 1

γ

〈
∇xL(x, λ),∇xL(x, λ)−A>(λ− λ∗)

〉
= −γ ‖x′‖2 − 〈Ax′, λ− λ∗〉 . (2.6)
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Also, we reformulate I2 as follows

I2 = 〈∇λL(x, λ), λ− λ∗〉 − 〈Ax−Ax∗, λ− λ∗〉 − 〈∇xL(x, λ∗), x− x∗〉 = −〈∇xL(x, λ∗), x− x∗〉 , (2.7)

where we have used the optimality condition Ax∗ = b. Since f is µ-convex, we know that L(·, λ∗) is also µ-convex
and it follows from (1.5) that

I2 6L(x∗, λ∗)− L(x, λ∗)− µ

2
‖x− x∗‖2 = L(x∗, λ)− L(x, λ∗)− µ

2
‖x− x∗‖2 .

Here, recall the fact that L(x∗, ·) is a constant. Consequently, collecting I3, (2.6) and (2.7) proves (2.5).

To obtain the exponential decay E ′(X) 6 −E(X) from (2.5), we shall prove −γ ‖x′‖2 − 〈Ax′, λ− λ∗〉 6 0. In
stead of twisting on the existence of this, in the next section, we resort to introducing a subtle modification
that cancels exactly the cross term 〈Ax′, λ− λ∗〉 in (2.5) and finally leads to the desired estimate.

2.2. A new primal-dual flow

Although (2.5) fails to give the desired result, it suggests a simple remedy: replacing ∇λL(x, λ) by ∇λL(x+
x′, λ). Then the first part I1 (cf. (2.6)) brings one more term 〈Ax′, λ− λ∗〉 which offsets exactly the last term
in (2.5) while both I2 and I3 keep unchanged.

Namely, we leave the parameter system (2.2) invariant but modify (2.1) properly to obtain a novel primal-dual
flow {

γx′ = −∇xL(x, λ), (2.8a)

βλ′ = ∇λL(x+ x′, λ). (2.8b)

Similar with (2.1), we claim that (2.8) admits a unique classical solution (x, λ) ∈ C1(R+; Ω). We also mention
that the extrapolation idea x + x′ in (2.8b) can be found previously in the second-order primal-dual ODE
proposed by [88]. In the sequel, we shall complete the exponential decay of the Lyapunov function (2.4) and
then provide an illustrative equilibrium analysis that gives a convincible explanation of the subtle modification
x+x′. Additionally, in Appendix A, we present an over-relaxation perspective, which perhaps shows the intrinsic
connection with the PDHG method [16].

Theorem 2.2. Assume f is L-smooth and µ-convex with µ > 0 and let X = (x, λ, γ, β) : R+ → V be the
unique solution to (2.2) and (2.8), then

d

dt
E(X) 6 −E(X)− γ ‖x′‖2 . (2.9)

Consequently, we have the exponential decay

E(X(t)) +

∫ t

0

es−tγ(s) ‖x′(s)‖2 ds 6 e−tE(X(0)), 0 6 t <∞. (2.10)

Proof. According to the above discussions, the proof of (2.9) is in line with that of (2.5) and thus omitted here.
The estimate (2.10) follows from (2.9) immediately.

Thanks to the two scaling factors introduced in (2.2), the exponential decay (2.10) holds uniformly for µ > 0.
Let γmin := min{γ0, µ}, then by (2.3), we have

γ(t) > max
{
γmin, γ0e

−t} ∀ t > 0. (2.11)
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Corollary 2.3. Assume f is L-smooth and µ-convex with µ > 0. Then for the unique solution (x, λ) : R+ → Ω
of (2.8), we have the following.

–
√
γ0 + γminet ‖x′(t)‖ ∈ L2(0,∞).

– 0 6 L(x(t), λ∗)− L(x∗, λ(t)) 6 e−tE(X(0)).

– λ(t) is bounded: β0 ‖λ(t)− λ∗‖2 6 2E(X(0)).

– x(t) is bounded: γ0 ‖x(t)− x∗‖2 6 2E(X(0)) and γmin ‖x(t)− x∗‖2 6 2e−tE(X(0)).
– ‖Ax(t)− b‖ 6 e−tR0 and |f(x(t))− f(x∗)| 6 e−t

(
E(X(0)) +R0 ‖λ∗‖

)
, where

R0 :=
√

2β0E(X(0)) + β0 ‖λ0 − λ∗‖+ ‖Ax0 − b‖ .

Proof. The first to the fourth follow directly from (2.4), (2.10) and (2.11). Let us prove the last one. Define
ξ(t) := λ(t)− β−1(t)(Ax(t)− b), then by (2.2) and (2.8b),

dξ

dt
= λ′(t)− β−1(t) (Ax′(t) +Ax(t)− b) = 0, (2.12)

which says ξ(t) = ξ(0) and also implies that

‖Ax(t)− b‖ = β(t) ‖λ(t)− ξ(0)‖ 6 β(t)
(
‖λ(t)− λ∗‖+ ‖ξ(0)− λ∗‖

)
.

Hence, from the fact β(t) = β0e
−t and the boundness of ‖λ(t)− λ∗‖, we have

‖Ax(t)− b‖ 6 e−t
(√

2β0E(X(0)) + β0 ‖ξ(0)− λ∗‖
)
6 e−tR0. (2.13)

Besides, it follows from (2.10) that

0 6 L(x(t), λ∗)− L(x∗, λ(t)) = f(x(t))− f(x∗) + 〈λ∗, Ax(t)− b〉 6 e−tE(X(0)),

which together with the previous estimate (2.13) gives

|f(x(t))− f(x∗)| 6 ‖λ∗‖ ‖Ax(t)− b‖+ e−tE(X(0)) 6 e−t
(
E(X(0)) +R0 ‖λ∗‖

)
.

This establishes the exponential decay of the primal objective error and completes the proof.

Remark 2.4. From Corollary 2.3, we conclude that for µ > 0, the primal-dual gap L(x(t), λ∗) − L(x∗, λ(t)),
the primal objective residual |f(x(t))− f(x∗)| and the feasibility violation ‖Ax(t)− b‖ decrease exponentially.

We also have strong convergence: ‖x(t)− x∗‖2 6 Ce−t for the strongly convex case µ > 0.

Remark 2.5. We mention that the well-posedness with general nonsmooth objective f is of interest to study
further. As we can see, the modified system (2.8) promises the exponential decay (2.9) but it is totally different
from the original one (2.1). In nonsmooth setting, (2.1) can be almost viewed as a dynamical system governed
by a maximally monotone operator:

Z ′(t) + Λ(t)M(Z(t)) 3 0, (2.14)

where Λ(t) = diag(γ−1(t)In, β
−1(t)Im), Z(t) = (x(t), λ(t)) and the maximally monotone operator M : Ω→ 2Ω

is defined by that

M(Z) :=

(
∂f(x) +A>λ

b−Ax

)
∀Z =

(
x
λ

)
∈ Ω. (2.15)



8 H. LUO

According to Section 4.2 of [28], we claim that (2.14) admits a unique solution Z = (x, λ) ∈ W 1,∞
loc (R+; Ω).

However, our primal-dual flow (2.8) reads as (cf. (3.1))

Z ′(t) +R(t)M(Z(t)) 3 0, (2.16)

where R(t) is a lower triangular matrix:

R(t) =

(
γ−1(t) Id O

γ(t)−1β−1(t)A β−1(t) Id

)
.

The existence and uniqueness of the solution to (2.16) is under studying. In addition, both the exponential
decay (2.9) and (weak) convergence of the trajectory Z(t) to a saddle-point (x∞, λ∞) ∈ Ω∗ deserve future
investigations.

2.3. A simple equilibrium analysis

Let p > 2 be a positive even integer and consider a simple smooth convex function

f(x) =
1

p
(xp1 + xp2) ∀x =

(
x1

x2

)
∈ R2,

with the linear constraint ax = x1 − x2 = 0, where a = (1,−1). Clearly (x∗, λ∗) = (0, 0, 0) is the unique saddle
point. Take µ = 0 and for simplicity we choose γ0 = β0 = 1, then γ(t) = β(t) = e−t and the original model (2.1)
becomes 

λ′ = et(x1 − x2),

x′1 =− et(xp−1
1 + λ),

x′2 =− et(xp−1
2 − λ).

(2.17)

The “linearization” around (x∗, λ∗) is

(
λ̂
x̂

)′
= etB

(
λ̂
x̂

)
with B =

(
0 a
−a> O

)
.

Note that B has three distinct eigenvalues: b1 = 0, b2 = −i
√

2 and b3 = i
√

2. This implies (x∗, λ∗) is stable but
not asymptotically stable and the solution trajectory of (2.17) will spin around (x∗, λ∗) with high oscillation
and thus converges dramatically slowly.

The modified system (2.8) reads as follows


λ′ = et(x1 + x′1 − x2 − x′2),

x′1 =− et(xp−1
1 + λ),

x′2 =− et(xp−1
2 − λ),

(2.18)

and its “linearization” at (x∗, λ∗) is

(
λ̂
x̂

)′
= etB̂(t)

(
λ̂
x̂

)
with B̂(t) =

(
−2et a
−a> O

)
.
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Figure 1. Solution trajectories (the left for (2.17) and the medium for (2.18)) and their errors
(the right) with p = 6.

Given any fixed time t > ln
√

2, all the eigenvalues of B̂(t) are

b̂1 = 0, b̂2 = − 2

et +
√
e2t − 2

and b̂3 = −et −
√
e2t − 2.

From this, we observe more negativity of the real part of nonzero eigenvalues and hopefully the solution (x, λ)
to the modified system (2.18) converges to (x∗, λ∗) more quickly.

In conclusion, our primal-dual flow (2.8) with subtle extrapolation x + x′ reduces the oscillation and
accelerates the convergence; see Figure 1.

3. An implicit scheme

From now on, we move to discrete level and consider general nonsmooth µ-convex objective f with µ > 0. In
this setting our primal-dual flow (2.8) becomes a differential inclusion{

γx′ ∈ −∂xL(x, λ), (3.1a)

βλ′ = ∇λL(x+ x′, λ), (3.1b)

where ∂xL(x, λ) = ∂f(x) +A>λ. As discussed in Remark 2.5, well-posedness of the solution to (3.1) in proper
sense is left as a future topic. In what follows, we shall present new primal-dual algorithms based on implicit
Euler discretization (this section) and semi-implicit discretization (the next section), respectively. Similarly with
the continuous level, the tool of Lyapunov function plays important role in convergence rate analysis.

3.1. Implicit discretization

We first consider an implicit Euler scheme for (3.1):

vk+1 = xk+1 +
xk+1 − xk

αk
, (3.2a)

βk
λk+1 − λk

αk
= ∇λL(vk+1, λk+1), (3.2b)

γk
xk+1 − xk

αk
∈ −∂xL(xk+1, λk+1), (3.2c)
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where αk > 0 denotes the step size and the parameter system (2.2) is also discretized implicitly

γk+1 − γk
αk

= µ− γk+1,
βk+1 − βk

αk
= −βk+1, (3.3)

with γ0 > 0 and β0 > 0.
Let us transform the time discretization (3.2) to a primal-dual algorithm. From (3.2c) it follows that

xk+1 − xk + θkA
>λk+1

θk
∈ −∂f(xk+1), (3.4)

where θk = αk/γk. Plugging (3.2a) into (3.2b) and using (3.3), we find

λk+1 = λk −
1

βk
(Axk − b) +

1

βk+1
(Axk+1 − b). (3.5)

Then, combining (3.4), (3.5) gives

xk+1 − x̂k
θk

+
1

βk+1
A>(Axk+1 − b) +A>λk ∈ −∂f(xk+1),

where x̂k := xk + θk/βkA
>(Axk − b). Consequently, we obtain


xk+1 = argmin

x∈Rn

{
L(x, λk) +

1

2βk+1
‖Ax− b‖2 +

1

2θk
‖x− x̂k‖2

}
, (3.6a)

vk+1 = xk+1 + (xk+1 − xk)/αk, (3.6b)

λk+1 = λk + αk/βk(Avk+1 − b). (3.6c)

Note that in (3.2c) we used only the Lagrangian function L(x, λ) without the augmented term ‖Ax− b‖2.
However, λk+1 and xk+1 are coupled with each other, and this equips (3.6a) with the augmented term.

The method (3.6) is very close the the proximal ALM and the key is to solve the subproblem (3.6a) with
respect to the primal variable xk+1. On the other hand, from (3.4) we observe that xk+1 = proxθkf (xk −
θkA

>λk+1). Putting this back to (3.6c) gives a nonlinear equation in terms of the multiplier λk+1:

βk+1λk+1 −Aproxθkf
(
xk − θkA>λk+1

)
− zk = 0, (3.7)

where zk = βk+1

(
λk − β−1

k (Axk − b)
)
− b. As discussed later in Section 4.1, instead of computing xk+1 from

(3.6a), we apply the semi-smooth Newton method [32] to obtain λk+1 and then update xk+1.

Remark 3.1. For a better understanding of (3.6a) and (3.7), we give an operator perspective. Notice that (3.2)
is a nonlinear saddle-point type equation with respect to xk+1 and λk+1:

A
(
xk+1

λk+1

)
= rk where A =

(
Id + θk∂f A>

−A βk+1 Id

)
. (3.8)
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Formally, we have the following factorizations:

A =

(
Id A>/βk+1

O Id

)(
P O
O βk+1 Id

)(
Id O

−A/βk+1 Id

)
,

A =

(
Id O

( Id + θk∂f)−1(−A) Id

)(
Id + θk∂f O

O S

)(
Id ( Id + θk∂f)−1(−A>)
O Id

)
,

where P = Id + θk∂f +A>A/βk+1 and

S = βk+1 Id−A( Id + θk∂f)−1(−A>) = βk+1 Id−Aproxθkf (−A>)

is nothing but the Schur complement. Hence, to solve (3.8), we can compute

P−1 =
(

Id + θk∂f +A>A/βk+1

)−1
,

which corresponds to the augmented Lagrangian method (3.6a). On the other hand, one can calculate

S−1 =
(
βk+1 Id−Aproxθkf (−A>)

)−1
,

which is equivalent to solve the nonlinear equation (3.7).

The implicit scheme (3.2) (i.e., the method (3.6)) has been rewritten below as an algorithm framework,
which is called the implicit primal-dual (Im-PD) method. According to Theorem 3.2, we have global linear rate
(1 + α̂)−k as long as the step size is bounded below αk > α̂ > 0, and superlinear convergence follows if αk →∞.
Note that this holds even for convex case µ = 0. In fact, the fully implicit scheme (3.2) inherits the exponential
decay (2.9) from the continuous level, and thus we have the contraction (3.10) which has no restriction on the
step size αk. Besides, the strong convexity constant µ of the objective f is not necessarily needed since one can
set µ = 0 in (3.2) and this leaves the final rate in Theorem 3.2 unchanged.

Algorithm 1 Im-PD method for problem (1.1) with f being µ-convex (µ > 0)

Require: γ0 > 0, β0 > 0, x0 ∈ Rn, λ0 ∈ Rm.
1: for k = 0, 1, . . . do
2: Choose the step size αk > 0.
3: Update βk+1 = βk/(1 + αk) and γk+1 = (µαk + γk)/(1 + αk).
4: Set θk = αk/γk and zk = βk+1

(
λk − β−1

k (Axk − b)
)
− b.

5: Solve λk+1 from (3.7) via the SsN iteration (4.10) with the line search procedure (4.11).
6: Update xk+1 = proxθkf

(
xk − θkA>λk+1

)
.

7: end for

3.2. Convergence rate

We now prove the convergence rate of the implicit scheme (3.2) (i.e. Algorithm 1) via a discrete analogue to
(2.4):

Ek := L(xk, λ
∗)− L(x∗, λk) +

βk
2
‖λk − λ∗‖2 +

γk
2
‖xk − x∗‖2 , (3.9)

where (x∗, λ∗) ∈ Ω∗ and (xk, λk, γk, βk) ∈ V .
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Theorem 3.2. Assume f is µ-convex with µ > 0. Let {(xk, λk, γk, βk)} be generated by Algorithm 1 with
arbitrary step size αk > 0, then we have the contraction

Ek+1 − Ek 6 −αkEk+1, for all k ∈ N. (3.10)

Moreover, there holds that 

‖Axk − b‖ 6 R0 ×
k−1∏
i=0

1

1 + αi
, (3.11)

0 6 L(xk, λ
∗)− L(x∗, λk) 6 E0 ×

k−1∏
i=0

1

1 + αi
, (3.12)

|f(xk)− f(x∗)| 6 (E0 +R0 ‖λ∗‖)×
k−1∏
i=0

1

1 + αi
, (3.13)

where R0 :=
√

2β0E0 + β0 ‖λ0 − λ∗‖+ ‖Ax0 − b‖.

Proof. To prove (3.10), we mimic the continuous level (cf. Sect. 2) but replace the derivative with the difference
Ek+1 − Ek = I1 + I2 + I3, where


I1 := L(xk+1, λ

∗)− L(xk, λ
∗),

I2 :=
βk+1

2
‖λk+1 − λ∗‖2 −

βk
2
‖λk − λ∗‖2 ,

I3 :=
γk+1

2
‖xk+1 − x∗‖2 −

γk
2
‖xk − x∗‖2 .

(3.14)

Let pk+1 = (xk+1 − (xk − θkA>λk+1))/θk, then by (3.4), we have A>λ∗ − pk+1 ∈ ∂L(xk+1, λ
∗). Since L(·, λ∗)

is µ-convex, from (1.5) we obtain

I1 6
〈
A>λ∗ − pk+1, xk+1 − xk

〉
− µ

2
‖xk+1 − xk‖2 .

Shift λ∗ to λk+1 and use the relation

pk+1 −A>λk+1 = xk+1 − xk (3.15)

to lighten the previous estimate as follows

I1 6 −〈Axk+1 −Axk, λk+1 − λ∗〉 , (3.16)

where the surplus negative term −‖xk+1 − xk‖2 has been omitted.
Then let us focus on I2 and I3. By (3.3), a direct computation yields

I2 = − αkβk+1

2
‖λk+1 − λ∗‖2 +

βk
2

(
‖λk+1 − λ∗‖2 − ‖λk − λ∗‖2

)
= − αkβk+1

2
‖λk+1 − λ∗‖2 + βk 〈λk+1 − λk, λk+1 − λ∗〉 −

βk
2
‖λk+1 − λk‖2 .
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Plugging (3.2b) into the second term and dropping the last negative term lead to

I2 6 −αkβk+1

2
‖λk+1 − λ∗‖2 + αk 〈Axk+1 − b, λk+1 − λ∗〉+ 〈Axk+1 −Axk, λk+1 − λ∗〉 . (3.17)

Similarly, we have

I3 =
γk+1 − γk

2
‖xk+1 − x∗‖2 +

γk
2

(
‖xk+1 − x∗‖2 − ‖xk − x∗‖2

)
=
αk
2

(µ− γk+1) ‖xk+1 − x∗‖2 + γk 〈xk+1 − xk, (xk+1 + xk)/2− x∗〉 .
(3.18)

By (3.15), we divide the last term by that

γk 〈xk+1 − xk, (xk+1 + xk)/2− x∗〉 = γk 〈xk+1 − xk, xk+1 − x∗〉 −
γk
2
‖xk+1 − xk‖2

=− αk
〈
A>λk+1 − pk+1, xk+1 − x∗

〉
− γk

2
‖xk+1 − xk‖2 .

Since (3.4) implies A>λk+1 − pk+1 ∈ ∂L(xk+1, λk+1), we obtain

− αk
〈
A>λk+1 − pk+1, xk+1 − x∗

〉
6 αk(L(x∗, λk+1)− L(xk+1, λk+1))− µαk

2
‖xk+1 − x∗‖2

= αk(L(x∗, λk+1)− L(xk+1, λ
∗))− µαk

2
‖xk+1 − x∗‖2 − αk 〈Axk+1 − b, λk+1 − λ∗〉 ,

which promises the following bound

I3 6 αk(L(x∗, λk+1)− L(xk+1, λ
∗))− αkγk+1

2
‖xk+1 − x∗‖2

− αk 〈Axk+1 − b, λk+1 − λ∗〉 −
γk
2
‖xk+1 − xk‖2 .

(3.19)

Consequently, combining (3.16), (3.17), (3.19) proves (3.10).

From (3.10) we conclude that Ek 6 E0 ×
∏k−1
i=0

1
1+αi

, which together with (3.9) implies (3.12) and that

β0 ‖λk − λ∗‖2 6 2E0. Hence it is sufficient to prove (3.11) and (3.13). From (3.5) follows that

λk −
1

βk
(Axk − b) = λ0 −

1

β0
(Ax0 − b) for all k ∈ N, (3.20)

and the estimate (3.11) is derived as below

‖Axk − b‖ = βk
∥∥λk − λ0 + β−1

0 (Ax0 − b)
∥∥ 6 βk ‖λk − λ0‖+

βk
β0
‖Ax0 − b‖

6 βk ‖λk − λ∗‖+ βk ‖λ0 − λ∗‖+
βk
β0
‖Ax0 − b‖ 6

βk
β0
R0.

In addition, it is clear that

0 6 L(xk, λ
∗)− L(x∗, λk) = f(xk)− f(x∗) + 〈λ∗, Axk − b〉 6 L(xk, λ

∗)− L(x∗, λk),
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and thus

|f(xk)− f(x∗)| 6 ‖λ∗‖ ‖Axk − b‖+ L(xk, λ
∗)− L(x∗, λk) 6

βk
β0

(E0 + ‖λ∗‖R0) .

This establishes (3.13) and completes the proof of this theorem.

4. Composite optimization

In this section, we move to the composite case

min
x∈Rn

f(x) = h(x) + g(x) s.t. Ax = b, (4.1)

where h is L-smooth and µ-convex with µ > 0 and g is properly closed convex (possibly nonsmooth). Instead
of the fully implicit scheme (3.2), to utilize the composite structure of f = g + h, we adopt a semi-implicit
discretization that corresponds to the operator splitting (also known as the forward-backward technique). Note

also that if h is only convex but the nonsmooth part g is µ-convex, then we can consider f = ĥ + ĝ with
ĥ(x) = h(x) + µ/2 ‖x‖2 and ĝ(x) = g(x) − µ/2 ‖x‖2, which agrees with the current assumption for (4.1) and
proxĝ can be computed by proxg (cf. [63], Sect. 2.2).

4.1. A semi-implicit primal-dual proximal gradient method

Based on (3.2), we replace ∂xL(xk+1, λk+1) with ∇h(xk) + ∂g(xk+1) +A>λk+1 to obtain

vk+1 = xk +
xk+1 − xk

αk
, (4.2a)

βk+1
λk+1 − λk

αk
= ∇λL(vk+1, λk+1), (4.2b)

γk+1
xk+1 − xk

αk
∈ −∇h(xk)− ∂g(xk+1)−A>λk+1, (4.2c)

where the parameter system (2.2) is discretized explicitly by

γk+1 − γk
αk

= µ− γk,
βk+1 − βk

αk
= −βk. (4.3)

Similarly as before, the numerical scheme (4.2) admits a primal-dual formulation:
xk+1 = argmin

x∈Rn

{
f(x) +

〈
∇h(xk) +A>λk, x

〉
+

1

2βk+1
‖Ax− b‖2 +

1

2ηk
‖x− x̂k‖2

}
, (4.4a)

vk+1 = xk + (xk+1 − xk)/αk, (4.4b)

λk+1 = λk + αk/βk+1(Avk+1 − b), (4.4c)

where ηk = αk/γk+1 and x̂k = xk + ηk/βkA
>(Axk − b). In (4.4a), the smooth part h has been linearized while

the nonsmooth part g uses implicit discretization. This is analogous to the proximal gradient method [7, 63],
and we have to impose proper restriction on the step size αk (see Algorithm 2).

Notice also that the subproblem (4.4a) with respect to the primal variable xk+1 is not easy to solve. From
(4.2c) we have xk+1 = proxηkg

(
xk − ηk∇h(xk)− ηkA>λk+1

)
, and putting this into (4.4c) gives

βk+1λk+1 −Aproxηkg
(
yk − ηkA>λk+1

)
= zk, (4.5)
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where yk = xk − ηk∇h(xk) and zk = βk+1

(
λk − β−1

k (Axk − b)
)
− b. Below, we present a semi-smooth Newton

method to solve the nonlinear equation (4.5) in terms of the multiplier λk+1. This can be very efficient for
some practical cases that (i) the multiplier has lower dimension than the primal variable; (ii) the problem (4.5)
itself possesses some nice properties such as semi-smoothness and simple closed proximal formulation of g; (iii)
efficient iterative methods for updating the Newton direction can be considered.

4.1.1. A semi-smooth Newton method for the subproblem (4.5)

Define a mapping Fk : Rm → Rm by that

Fk(λ) := βk+1λ−Aproxηkg
(
yk − ηkA>λ

)
− zk ∀λ ∈ Rm. (4.6)

Then (4.5) is equivalent to Fk(λk+1) = 0. By Moreau’s identity (cf. [5], Thm. 6.45)

proxηg(x) + ηproxg∗/η(x/η) = x, (4.7)

where g∗ denotes the conjugate function of g, we find that Fk(λ) = ∇Fk(λ), with Fk(·) being defined by

Fk(λ) :=
βk+1

2
‖λ‖2 − 〈zk, λ〉+ g∗

(
proxg∗/ηk(yk/ηk −A>λ)

)
+

1

2ηk

∥∥proxηkg(yk − ηkA
>λ)

∥∥2
. (4.8)

Let ∂proxηkg(λ) be the generalized Clarke subdifferential [24] of the Lipschitz mapping proxηkg(λ). If

Pk(λ) ∈ ∂proxηkg
(
yk − ηkA>λ

)
is symmetric (this is indeed true when g is either the indicator function or

the support function for some nonempty convex polyhedral [38]), then for any λ ∈ Rm we can define an SPD
matrix

JFk(λ) := βk+1I + ηkAPk(λ)A> ∈ Rm×m. (4.9)

The semi-smooth Newton (SsN) method for solving (4.5) reads as follows: given an initial guess λ0 ∈ Rm, do
the iteration

λj+1 = λj −
[
JFk(λj)

]−1
Fk(λj), j > 0. (4.10)

Theoretically, it possesses local superlinear convergence provided that Fk is semismooth [66, 67]. Practically, it
can be terminated under some suitable criterion and for global convergence, a line search procedure [27] shall

be supplemented: given a Newton direction dj = −
[
JFk(λj)

]−1
Fk(λj) at step j, find the smallest nonnegative

integer r ∈ N such that

Fk(λj + δrdj) 6 Fk(λj) + νδr
〈
Fk(λj), dj

〉
, (4.11)

where ν ∈ (0, 1/2), δ ∈ (0, 1] and Fk(·) has been defined in (4.8). Generally the inverse operation
[
JFk(λj)

]−1
in

(4.10) shall be approximated by some iterative process such as the (preconditioned) conjugate gradient method
[69]. For more discussions about the linear solver, we refer to Section 5.1.2.

Below we summarize the semi-implicit scheme (4.2) in Algorithm 2, which is called the semi-implicit primal-
dual proximal gradient (Semi-PDPG) method. As suggested later by Theorem 4.3, the step size αk is determined
simply by αk(L+ γk+1) = γk+1, which promises the convergence rate O(min{L/k, (1 + µ/L)−k}) (cf. (4.16)).

4.2. Proof of the convergence rate

To move on, the following two lemmas are needed.
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Algorithm 2 Semi-PDPG method for (4.1) with h being L-smooth and µ-convex (µ > 0)

Require: γ0 > 0, β0 > 0, x0 ∈ Rn, λ0 ∈ Rm.
1: for k = 0, 1, . . . do
2: Set σk = L+ 2γk − µ and ∆k = σk +

√
σ2
k + 4γk(µ− γk).

3: Compute the step size αk = 2γk/∆k ∈ (0, 1).
4: Update βk+1 = βk(1− αk) and γk+1 = µαk + (1− αk)γk.
5: Set ηk = αk/γk+1 and yk = xk − ηk∇h(xk).
6: Set zk = βk+1

(
λk − β−1

k (Axk − b)
)
− b.

7: Solve λk+1 from (4.5) via the SsN iteration (4.10) with the line search procedure (4.11).
8: Update xk+1 = proxηkg

(
yk − ηkA>λk+1

)
.

9: end for

Lemma 4.1. Assume h is L-smooth and µ-convex with µ > 0 and g is properly closed convex. Let
{(xk, λk, γk, βk)} be generated by (4.2) and (4.3), then for all y ∈ Rn,

L(xk+1, λk+1)− L(y, λk+1) +
γk+1

αk
〈xk+1 − xk, xk − y〉 6 −

µ

2
‖y − xk‖2 +

Lαk − 2γk+1

2αk
‖xk+1 − xk‖2 . (4.12)

Proof. Define φ(x) := h(x) + 〈λk+1, Ax− b〉 for all x ∈ Rn. As h is L-smooth and µ-convex, there holds that

φ(xk)− φ(y) + 〈∇φ(xk), y − xk〉 6−
µ

2
‖y − xk‖2 ,

φ(xk+1)− φ(xk)− 〈∇φ(xk), xk+1 − xk〉 6
L

2
‖xk+1 − xk‖2 .

In addition, by (4.2c), we have

γk+1
xk − xk+1

αk
−∇φ(xk) ∈ ∂g(xk+1),

and it follows that

g(xk+1)− g(y) 6

〈
γk+1

xk − xk+1

αk
−∇φ(xk), xk+1 − y

〉
=
γk+1

αk
〈xk − xk+1, xk − y〉 − 〈∇φ(xk), xk+1 − y〉 −

γk+1

αk
‖xk+1 − xk‖2 .

Collecting the above estimates and using the fact L(·, λk+1) = φ(·) + g(·), we obtain (4.12) and conclude the
proof.

Recall γmin defined in (2.11) and for later use we set γmax := max{γ0, µ}.

Lemma 4.2. Let {(γk, βk)} be defined by (4.3) with αk(L + γk+1) 6 2γk+1, then αk ∈ (0, 1] for all k ∈ N.
Moreover, if αk(L+ γk+1) = γk+1 then

k−1∏
i=0

(1− αi) 6 min

{
L+ γmax

γ0k + L+ γmax
,

(
L

L+ γmin

)k}
. (4.13)

Proof. Let us first verify the existence of the sequence {αk} ⊂ (0, 1]. As αk(L + γk+1) 6 2γk+1 and γk+1 =
γk + αk(µ− γk) (cf. (4.3)), we obtain ψk(αk) := (µ− γk)α2

k + (L+ 3γk − 2µ)αk − 2γk 6 0. As γ0 > 0, we have
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ψ0(0) = −2γ0 < 0 and ψ0(1) = L− µ > 0. Hence, there must be at least one (actually unique) root α∗ ∈ (0, 1]
of ψ0(α) = 0. Hence, any α0 ∈ (0, α∗] satisfies α0(L+ γ1) 6 2γ1. Repeating this process for ψk(α) and noticing
that γk > 0 yield the existence of αk ∈ (0, 1] for all k > 1.

From (4.3) we have βk = β0

∏k−1
i=0 (1 − αi). It remains to investigate the asymptotic decay behavior of βk

with αk(L+ γk+1) = γk+1. To do this, let us start from the identity

1

βk+1
− 1

βk
=
βk − βk+1

βkβk+1
=

αk
βk+1

,

which indicates

γk+1

γk
> 1− αk =

βk+1

βk
=⇒ γk >

γ0

β0
βk.

Besides, it follows from this and the relation αk(L+ γk+1) = γk+1 that

1

βk+1
− 1

βk
>

γ0αk
β0γk+1

=
γ0

β0(L+ γk+1)
>

γ0

β0(L+ γmax)
.

Hence, we get

βk
β0

6
L+ γmax

γ0k + L+ γmax
. (4.14)

On the other hand, since γk+1 > γmin, we have αk = γk+1/(L + γk+1) > γmin/(L + γmin). Therefore, another
bound follows immediately

βk
β0

=

k−1∏
i=0

(1− αi) 6
(

L

L+ γmin

)k
.

Combining this with the previous estimate (4.14) establishes (4.13) and completes the proof of this lemma.

We now prove the convergence rate of Algorithm 2 by using the discrete Lyapunov function (3.9).

Theorem 4.3. Assume h is L-smooth and µ-convex with µ > 0 and g is properly closed convex. Let
{(xk, λk, γk, βk)} be generated by (4.2) and (4.3) with αk(L+ γk+1) 6 2γk+1, then we have {αk} ⊂ (0, 1] and

Ek+1 − Ek 6 −αkEk, for all k ∈ N. (4.15)

Moreover, if αk(L+ γk+1) = γk+1, then

L(xk, λ
∗)− L(x∗, λk) + |F (xk)− F (x∗)|+ ‖Axk − b‖ 6 C0 ×min

{
L+ γmax

γ0k + L+ γmax
,

(
L

L+ γmin

)k}
, (4.16)

where C0 := E0 +R0(1 + ‖λ∗‖) with R0 :=
√

2β0E0 + β0 ‖λ0 − λ∗‖+ ‖Ax0 − b‖.

Proof. The existence of the step size sequence {αk} ⊂ (0, 1] has been proved in Lemma 4.2. Once the contraction

(4.15) is established, we obtain Ek 6 E0 ×
∏k−1
i=0 (1 − αi), and the estimate (4.16) can be obtained by using

Lemma 4.2 and the same procedure for proving (3.11), (3.12) and (3.13).
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Following the proof of Theorem 3.2, we start from the difference Ek+1 − Ek = I1 + I2 + I3, where I1, I2 and
I3 are defined in (3.14). By (4.3), we have

I2 =
βk+1 − βk

2
‖λk − λ∗‖2 +

βk+1

2

(
‖λk+1 − λ∗‖2 − ‖λk − λ∗‖2

)
= − αkβk

2
‖λk − λ∗‖2 + βk+1 〈λk+1 − λk, λk+1 − λ∗〉 −

βk+1

2
‖λk+1 − λk‖2 .

Plugging (4.2b) into the second term and dropping the last negative term lead to

I2 6 −αkβk
2
‖λk − λ∗‖2 + αk 〈Avk+1 − b, λk+1 − λ∗〉 . (4.17)

Similarly, for I3, it holds that

I3 =
γk+1 − γk

2
‖xk − x∗‖2 +

γk+1

2

(
‖xk+1 − x∗‖2 − ‖xk − x∗‖2

)
=
αk(µ− γk)

2
‖xk − x∗‖2 + γk+1 〈xk+1 − xk, xk − x∗〉+

γk+1

2
‖xk+1 − xk‖2 ,

and invoking Lemma 4.2 gives

I3 6 αk(L(x∗, λk+1)− L(xk+1, λk+1))− αkγk
2
‖xk − x∗‖2 +

Lαk − γk+1

2
‖xk+1 − xk‖2 .

To match the right hand side of (4.15), we shift (xk+1, λk+1) to (xk, λk+1) and then to (xk, λ
∗) and obtain

that

I3 6 αk(L(x∗, λk)− L(xk, λ
∗))− αkγk

2
‖xk − x∗‖2

− αk 〈Axk − b, λk+1 − λ∗〉+
Lαk − γk+1

2
‖xk+1 − xk‖2

+ αk(L(xk, λk+1)− L(xk+1, λk+1)).

To offset the last term in the above estimate, we shall divide I1 as follows

I1 = L(xk+1, λ
∗)− L(xk, λ

∗)

= αk(L(xk+1, λk+1)− L(xk, λk+1))− 〈Axk+1 −Axk, λk+1 − λ∗〉
+ (1− αk)(L(xk+1, λk+1)− L(xk, λk+1)).

Applying Lemma 4.2 again implies

I1 6 αk(L(xk+1, λk+1)− L(xk, λk+1))− 〈Axk+1 −Axk, λk+1 − λ∗〉

+
1− αk

2αk
(Lαk − 2γk+1) ‖xk+1 − xk‖2 ,

which together with the relation vk+1 = xk + (xk+1 − xk)/αk yields that

I1 + I3 6 αk(L(x∗, λk)− L(xk, λ
∗))− αkγk

2
‖xk − x∗‖2 − αk 〈Avk+1 − b, λk+1 − λ∗〉

+
αk(L+ γk+1)− 2γk+1

2αk
‖xk+1 − xk‖2 .

(4.18)
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Consequently, combining this with the estimate (4.17) for I2 implies

Ek+1 − Ek 6− αkEk +
αk(L+ γk+1)− 2γk+1

2αk
‖xk+1 − xk‖2 ,

where the last term is negative since αk(L+ γk+1) 6 2γk+1. This establishes (4.15) and completes the proof.

5. Numerical experiments

In this part, we investigate practical performances of Algorithms 1 and 2 for the l1-l2 minimization (5.1) and
the total-variation based image denoising model (5.10).

5.1. The l1-l2 minimization

We first consider the linearly constrained l1-l2 minimization:

min
x∈Rn

ρ

2
‖x‖2 + ‖x‖1 s.t. Ax = b, (5.1)

where ρ > 0, b ∈ Rm and A ∈ Rm×n with m � n. This is a regularized model for the so-called basis pursuit
[21], which corresponds to the limit case ρ = 0 and is related to compressed sensing [14].

For g(x) = ‖x‖1 and any η > 0, the proximal mapping y = proxηg(x) = sgn(x)�max{|x|−η, 0} is well known
as the soft thresholding operator, with the i-th component of y being given by yi = sgn(xi) max{|xi| − η, 0}.
Here and in what follows, � and � stand respectively for element-wise multiplication and division opera-
tions. The conjugate function g∗ of g is the indicator function of the cube [−1, 1]n and thus proxηg∗(x) =
min {max{x,−1}, 1}.

5.1.1. Comparison with ALB

There are some well-known Bregman iterative methods for solving (5.1); see [12, 45, 48, 86]. Both of the two
accelerated variants in [45, 48] possess the nonergodic sublinear rate O(1/k2) for the dual objective but the
method in [48] involves a subproblem for the primal variable. In contrast, the accelerated linearized Bregman
(ALB) method in [45] linearizes the augmented term and admits closed update formulation in each step. More

precisely, it reads as follows: given λ0, λ̃0 ∈ Rm, do the iteration
xk+1 = proxg/ρ

(
−A>λ̃k/ρ

)
,

λk+1 = λ̃k + τ (Axk+1 − b) ,

λ̃k+1 = tkλk+1 + (1− tk)λk,

(5.2)

where tk = (2k + 3)/(k + 3) and τ = ρ/ ‖A‖2.
We apply Algorithm 2 to the problem (5.1). In this case, as g is piecewise affine, proxηg is strongly semismooth

[32] and so is the nonlinear mapping Fk(·) defined by (4.6). For η > 0 and x ∈ Rn, define a diagonal matrix

Pη(x) = diag(p) ∈ Rn×n with pi =

{
1 if |xi| > η,

0 if |xi| < η.
(5.3)

Then it is easy to see that Pη(x) ∈ ∂proxηg(x), and we obtain a generalized Clarke subgradient for (4.5):

JFk(λ) = βk+1I + ηkAPηk [vk(λ)]A> ∈ Rm×m, (5.4)
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where vk(λ) = yk − ηkA>λ. Note that Pηk [vk(λ)] = diag(p) where p is defined by (5.3), and thus JFk(λ) is
always SPD. Moreover, the function (4.8) becomes

Fk(λ) =
βk+1

2
‖λ‖2 − 〈zk, λ〉+

1

2ηk

∥∥proxηkg[vk(λ)]
∥∥2
.

Algorithm 3 Inexact Semi-PDPG method for the l1-l2 minimization problem (5.1)

Require: γ0 > 0, β0 > 0, x0 ∈ Rn and λ0 ∈ Rm.
1: Problem setting: ρ > 0, b ∈ Rm and A ∈ Rm×n.
2: SsN setting: ν = 0.2, δ = 0.9 and jmax = 10.
3: Tolerances: KKT Tol = 10−6 and SsN Tol = 10−8.
4: for k = 0, 1, . . . do
5: Set σk = 2γk and ∆k = σk +

√
σ2
k + 4γk(ρ− γk).

6: Compute the step size αk = 2γk/∆k ∈ (0, 1).
7: Update βk+1 = βk(1− αk) and γk+1 = ραk + (1− αk)γk.
8: Set ηk = αk/γk+1 and yk = xk − ηkρxk.
9: Set zk = βk+1

(
λk − β−1

k (Axk − b)
)
− b.

10: Solve λk+1 from the nonlinear equation

Fk(λ) := βk+1λ−Aproxηkg
(
yk − ηkA>λ

)
− zk = 0 (5.5)

via the following SsN iteration with λ = λk and j = 0:
11: while ‖Fk(λ)‖ > SsN Tol and j < jmax do {SsN iteration}
12: Compute vk = yk − ηkA>λ.
13: Find Pηk(vk) ∈ ∂proxηkg(vk) via (5.3).

14: Compute JFk(λ) = βk+1I + ηkAPηk(vk)A>.
15: Solve JFk(λ)d = −Fk(λ).
16: Find the smallest integer r ∈ N+ such that Fk(λ+ δrd) 6 Fk(λ) + νδr 〈Fk(λ), d〉.
17: Update λ = λ+ δrd and j = j + 1.
18: end while
19: Update λk+1 = λ and xk+1 = proxηkg

(
yk − ηkA>λk+1

)
.

20: if Res(k) 6 KKT Tol then
21: break
22: end if
23: end for

We rewrite Algorithm 2 in Algorithm 3, where a practical inexact setting is considered. The SsN iteration
(cf. lines 11–18 in Algorithm 3) is stopped either ‖Fk(λ)‖ 6 SsN Tol = 10−8 or jmax = 10. For the line search
procedure, we adopt ν = 0.2 and δ = 0.9. All initial guesses β0, x0 and λ0 are generated randomly, and we chose
γ0 = µ+ σ with σ obeying the uniform distribution on [0, 1]. By Theorem 4.3 we the linear rate 2−k (with exact
computation).

Recall the optimality condition of problem (5.1): Ax∗ = b and x∗ = proxg((1 − ρ)x∗ − A>λ∗). Hence, we
consider the stopping criterion:

Res(k) := max {Res(xk),Res(λk)} 6 KKT Tol = 10−6, (5.6)
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Table 1. Performances of inexact semi-PDPG (i.e., Algorithm 3) and ALB method (5.2) for
solving (5.1). Here, “direct” and “PCG” mean that the linear system in step 15 of Algorithm 3
is solved respectively by direct method and PCG.

Inexact Semi-PDPG(direct) Inexact Semi-PDPG(PCG) ALB

m n its SsN time(sec) its SsN time (s) its time(sec)

ρ = 0.5

5e+02 2e+03 21 42 5.20 21 40 3.59 537 4.20

8e+02 3e+03 21 46 10.76 21 43 11.40 593 10.86

1e+03 4e+03 21 39 12.33 21 42 12.37 546 16.15

ρ = 0.1

2e+02 1e+03 20 34 0.70 20 43 1.08 2330 2.68

5e+02 3e+03 21 37 3.66 19 51 5.66 1967 23.81

1e+03 5e+03 20 43 15.61 20 47 14.00 2118 81.83

ρ = 0.01

5e+02 2e+03 19 56 4.50 18 60 5.92 13174 103.54

9e+02 4e+03 18 56 12.49 22 87 41.76 12712 379.83

2e+03 8e+03 17 63 87.29 19 82 246.34 13819 1693.99

ρ = 0.005

8e+02 3e+03 21 86 23.39 19 75 39.25 19793 375.07

2e+03 6e+03 20 86 153.48 23 126 579.69 20811 1778.27

3e+03 9e+03 19 83 509.93 24 139 1933.28 21568 6592.60

where the relative KKT residuals are defined by

Res(λk) :=
‖Axk − b‖

1 + ‖b‖
and Res(xk) :=

∥∥xk − proxg
(
(1− ρ)xk −A>λk

)∥∥
1 + ‖xk‖

.

In step 15 of Algorithm 3, we have to solve a linear system and we consider two ways: one is direct method
as m � n and the other is preconditioned conjugate gradient (PCG) method (cf. [69], Algorithm 9.1) with
diagonal preconditioner. The PCG iteration is stopped either the relative residual is smaller than 10−8 or the
maximal iteration number 5000 is attained.

Computational results are reported in Table 1, which includes (i) its: the number of iterations, (ii) SsN: the
total number of the SsN iterations for the inner problem (5.5), and (iii) time: the running time (in seconds).
To achieve the tolerance (5.6), the number of iterations of Algorithm 3 is almost k∗ = 6 ln 10/ ln 2 ≈ 20. This
can be observed from Table 1. However, as ρ becomes small, the problem (5.1) itself is more degenerate and the
number of iterations of the ALB method grows dramatically.

5.1.2. Performance of the PCG iteration

From Table 1 we see that Algorithm 3 with PCG solver is slightly inferior than that with direct solver, both
for total iteration number and running time. We now investigate the performance of the PCG iteration.

The linear system arising from step 15 of Algorithm 3 is JFk(λ)d = −Fk(λ), where JFk(·) = βk+1I + ηkA0(·)
is defined by (5.4) and A0(·) is symmetric semi-positive definite. Note that JFk(·) is always SPD but also nearly
singular as βk+1 → 0. Hence, the number of iterations increases as k does. Fortunately, for large k, we may
expect that Fk(·) is close to zero (as the algorithm converges) and the nearly singular property is not a serious
problem.

Recall that we used the diagonal preconditioner, i.e., Jacobi iteration, and the terminal criterion is relative
residual 6 10−8, with the maximal iteration number 5000. In every k-th step of Algorithm 3, we record the
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Figure 2. Averaged PCG iterations of Algorithm 3 for solving (5.1) with different problem
size and ρ.

PCG iteration #k,j of the j-th SsN iteration and obtain an averaged number #k = 1
sk

∑sk
j=1 #k,j , where sk

denotes the number of SsN iterations for solving the subproblem (5.5).
In Figure 2, we plot the averaged PCG iterations of Algorithm 3 with the same problem size and ρ used

in Table 1. As predicted above, due to the nearly singular property, the PCG iteration number grows up as k
increases but it stays flat for large k. Moreover, it is not robust with respect to the problem size and ρ.

5.1.3. Restarting and warm-up

Note that in the few starting steps, i.e., for small k, the SsN iteration may not achieve the desired tolerance∥∥Fk(λj)
∥∥ 6 SsN Tol within jmax = 10 iterations and the KKT residual Res(k) (cf. (5.6)) might not decay

linearly while βk has already attained a small number, which makes the subproblem (5.5) degenerate. Hence,
to ensure the stability, we adopt the restart technique.
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Figure 3. Performance of Algorithm 3 for solving (5.1) with m = 2000, n = 5000 and ρ =
0.0005. The maximal iteration numbers of the SsN iteration for the top row and the bottom
row are jmax = 10 and jmax = 15, respectively. The left part plots the decay behavior of the
errors and the right part shows the number of SsN iteration in each step.

For a more singular case ρ = 0.0005, we restart Algorithm 3 whenever βk 6 10−7 and the KKT residual
Res(k) increases. From Figure 3, we observe that for this extreme case, (i) the total iteration number increases;
(ii) in more than half of the total number of iterations, the errors decay slowly and the SsN iteration number
attains its maximal value jmax (we set jmax = 10 for the top row and jmax = 15 for the bottom row), but after
that, fast local linear convergence arises and the number of SsN iterations decreases.

As suggested by the results in Figure 3, a warm-up procedure might improve the performance of the algorithm
and we show this in Figure 4, where the initial guess is obtained by running the ALB method 500 times. This
works well indeed and the convergence behavior is much better than that in Figure 3.
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Figure 4. Performance of Algorithm 3 for solving (5.1) with warm-up procedure. Here, we
take m = 2000, n = 5000 and ρ = 0.0005, and the maximal number of the SsN iteration is
jmax = 15. The initial guess is obtained via running the ALB method 500 times.

5.2. Total-variation based image denoising

Given a noised image g ∈ L2(Ω) with the domain Ω ⊂ R2, the total variation based denoising model proposed
by Rudin, Osher and Fatemi (ROF for short) [68] reads as follows

min
u

∫
Ω

|∇u| dx+
ρ

2
‖u− g‖2L2(Ω) , (5.7)

where ρ > 0 is the regularization parameter and |∇u| :=
√
|∇xu|2 + |∇yu|2.

5.2.1. Discrete formulations

In discrete setting, problem (5.7) becomes

min
U∈Rm×n

m∑
i=1

n∑
j=1

√
| (D(U))i,j,1 |2 + | (D(U))i,j,2 |2 +

ρ

2
‖U − Ξ‖2F , (5.8)

where Ξ ∈ Rm×n and D : Rm×n → Rm×n×2 denotes the discrete gradient operator, i.e.,

(D(U))i,j,1 :=

{
Ui+1,j − Ui,j if i < m,

0 if i = m,
and (D(U))i,j,2 :=

{
Ui,j+1 − Ui,j if j < n,

0 if j = n,

for all 1 6 i 6 m and 1 6 j 6 n. Let vec(×) be the vector expanded by the matrix × by its column. Then
rewrite (5.8) as a composite problem

min
u∈Rmn

ψ(Au) +
ρ

2
‖u− ξ‖2 , (5.9)
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where ξ = vec(Ξ) and A :=

(
In ⊗Dm

Dn ⊗ Im

)
, with the difference matrices Dm and Dn being defined such that

(In ⊗Dm)vec(U) = vec(D(U)i,j,1) and (Dn ⊗ Im)vec(U) = vec(D(U)i,j,2).
Let A = (−A, I) and introduce a function ψ : R2mn → R by that

ψ(p) :=

mn∑
i=1

√
p2
i + q2

i ∀p =

(
p

q

)
∈ R2mn.

Then (5.9) can be written as the standard form (1.1):

min
X=(u,p)

f(X) :=
ρ

2
‖u− ξ‖2 + ψ(p) s.t.AX = 0. (5.10)

5.2.2. Accelerated primal-dual methods

There are some well-known accelerated primal-dual methods for solving the discrete ROF model (5.8). Here,
we choose two baseline algorithms: the primal-dual hybrid gradient (PDHG) method ([16], Algorithm 2) and the
accelerated alternating direction method of multipliers (A-ADMM) ([82], Algorithm 2). Ergodic convergence
rate O(1/k2) is achieved by those two methods. For completeness, we list them as below.

– PDHG method ([16], Algorithm 2) This method starts from the minimax formulation of (5.9):

min
u∈Rmn

max
λ∈R2mn

〈Au,λ〉+
ρ

2
‖u− ξ‖2 − ψ∗(λ), (5.11)

where

λ =

(
v

w

)
∈ R2mn and ψ∗(λ) :=

0 if
√
v2
i + w2

i 6 1 for all 1 6 i 6 mn,

+∞ else.

More precisely, it reads as follows: given σ0 = 0, λ0 ∈ R2mn and u−1 = u0 ∈ Rmn, do the iteration



ūk = uk + σk(uk − uk−1),

λk+1 = proxθkψ∗(λk + θkAūk),

uk+1 =
uk − τkA>λk+1

1 + ρτk
+

ρτkξ

1 + ρτk
,

σk+1 = 1/
√

1 + 2ρτk, τk+1 = σk+1τk, θk+1 = θk/σk+1,

(5.12)

where τ0θ0 ‖A‖2 6 1 with ‖A‖2 6 8 (cf. [15]). Thanks to Moreau’s identity (4.7), for all θ > 0, we have
proxθψ∗(λ) = (v � σ(λ), w � σ(λ)), where σ(λ) := 1− τ(v, w) with τ(v, w) being defined by (5.14).
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– A-ADMM ([82], Algorithm 2) Applying this method to problem (5.10) leads to the iteration: given

θ > ‖A‖2 , λ0 = 0, p0 ∈ R2mn and u0 ∈ Rmn, compute

θk =
2θ

ρ(k + 1)
,

pk+1 = proxθkψ(Auk − θkλk),

uk+1 =
(
ρθkI +A>A

)−1 (
A>(pk+1 + θkλk) + ρθkξ

)
,

λk+1 = λk +
1

θk
(pk+1 −Auk+1) ,

(5.13)

where proxθkψ(·) is defined by (5.15) and the inverse operation
(
ρθkI +A>A

)−1
can be realized via fast

Fourier transform.

5.2.3. Inexact implicit primal-dual method

We apply our Algorithm 1 to problem (5.10) and obtain an inexact Im-PD method; see Algorithm 4. For
clarity, we provide some details about the proximal calculations. Given a, b ∈ R and θ > 0, define τθ(a, b) ∈ R
and Tθ(a, b) ∈ R2×2 respectively by that

τθ(a, b) := 1− θ

max
{
θ,
√
a2 + b2

} ,
Tθ(a, b) :=

τθ(a, b)I +
1− τθ(a, b)
a2 + b2

(
a2 ab

ab b2

)
if
√
a2 + b2 > θ,

O2×2 else.

If a, b ∈ Rn, then τθ(a, b) ∈ Rn can be understood as point wise operation:

τθ(a, b) := 1n − θ1n �max{θ1n,
√
a� a+ b� b}. (5.14)

For θ = 1, we simply write τθ(a, b) = τ(a, b).
For X = (u,p) ∈ R3mn and θ > 0, the proximal mapping of f is given by proxθf (X) = (u+ρθξ

1+ρθ ,proxθψ(p)),
where

proxθψ(p) = (p� τθ(p, q), q � τθ(p, q)). (5.15)

According to Chapter 7 of [32], f is strongly semismooth and so is the nonlinear mapping Fk(·) defined by
(5.17). Moreover, a direct computation shows that Pθ(X) ∈ ∂proxθf (X) where

Pθ(X) :=

(
1

1+ρθ I O

O T

)
with T =

(
diag(τ11) diag(τ12)

diag(τ21) diag(τ22)

)
. (5.16)

In (5.16), T is block diagonal and Tθ(pi, qi) =

(
(τ11)i (τ12)i

(τ21)i (τ22)i

)
for all 1 6 i 6 mn. For Y = (s,λ) ∈ R3mn, it

is not hard to find that f∗(Y ) = 1
2ρ ‖s‖

2
+ 〈s, ξ〉+ ψ∗(λ), and thus the function (4.8) becomes

Fk(λ) =
βk+1

2
‖λ‖2 − 〈Zk,λ〉+ f∗(Yk(λ)) +

1

2θk

∥∥proxθkf [Yk(λ)]
∥∥2
,
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where Zk = βk+1

(
λk − β−1

k AXk

)
and Yk(λ) = Xk − θkA>λ.

As motivated by the first example (cf. Fig. 4), in line 3 of Algorithm 4, we consider a warm-up step to provide
a reasonable initial guess (X0,λ0) and therefore enhance the performance. Besides, in step (13), the linear SPD
system has special sparse structure that Tk is a 2× 2 block matrix with each block being diagonal (see (5.16))
and

AA> =

(
H11 H12

H>12 H22

)
=

(
In ⊗DmD

>
m D>n ⊗Dm

D>m ⊗Dn DnD
>
n ⊗ Im

)
,

where H11 is block diagonal and both H12 and H22 are block tridiagonal. Hence, we consider the incomplete
Cholesky factorization (cf. [69], Chap. 10) as a preconditioner and apply preconditioned CG to step (13) to
obtain an approximation with relative residual 6 10−8.

Algorithm 4 Inexact Im-PD method for the discrete ROF model (5.10)

Require: β0 > 0, ν = 0.2 and δ = 0.9.
1: Problem setting: ρ > 0 and ξ ∈ Rmn.
2: Tolerances: KKT Tol = 10−6 and SsN Tol = 10−8.
3: Perform a warm-up step to obtain: X0 = (u0,p0) ∈ R3mn and λ0 ∈ R2mn.
4: for k = 0, 1, . . . do
5: Choose the step size αk > 0 and update βk+1 = βk/(1 + αk).
6: Set θk = αk/βk and ρk = 1/(1 + ρθk).
7: Set Zk = βk+1

(
λk − β−1

k AXk

)
.

8: Solve λk+1 from the nonlinear equation

Fk(λ) := βk+1λ−Aproxθkf
(
Xk − θkA>λ

)
− Zk = 0 (5.17)

via the following SsN iteration with the initial guess λ = λk:
9: while ‖Fk(λ)‖ > SsN Tol do {SsN iteration}

10: Compute Yk = Xk − θkA>λ.

11: Find Pk(Yk) =

(
ρkI O

O Tk

)
∈ ∂proxθkf (Yk) via (5.16).

12: Compute JFk(λ) = βk+1I + θkTk + ρkθkAA
>.

13: Solve JFk(λ)d = −Fk(λ) approximately via preconditioned CG.
14: Find the smallest integer r ∈ N+ such that Fk(λ+ δrd) 6 Fk(λ) + νδr 〈Fk(λ),d〉.
15: Update λ = λ+ δrd.
16: end while
17: Update λk+1 = λ and Xk+1 = proxθkf

(
Xk − θkA>λk+1

)
.

18: if Res(k) 6 KKT Tol then
19: break
20: end if
21: end for
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Table 2. Performances of Algorithm 4, PDHG (5.12) and A-ADMM (5.13) for solving (5.8).

Inexact Im-PD (Algorithm 4) A-ADMM (5.13) PDHG (5.12)

m = n ρ its SsN warm-up(sec) time(sec) its time(sec) its Res(kmax) time(sec)

barb 512
50 10 182 47.11 830.53 1572 1497.40

105 5.15e-06 5169.55

150 10 141 41.76 568.34 3445 3192.33 3.59e-06 5213.23

boat 512
40 9 84 54.53 457.05 1300 1145.84

105 5.49e-06 5228.70

180 10 141 44.34 611.90 3866 3316.70 3.42e-06 5223.88

cameraman 256
20 7 52 8.48 78.91 724 124.58

105 7.77e-06 1299.35

100 10 81 8.36 70.26 2575 448.94 4.10e-06 1262.76

lena 256
50 9 111 8.55 117.86 1554 288.23

105 5.29e-06 1229.09

200 11 157 8.47 158.41 4099 758.60 3.55e-06 1210.58

5.2.4. Numerical results

We adopt four benchmark images from the literature: barb, boat, cameraman and lena. These images are
noised with standard normal distribution. Note that both (5.11), (5.10) admit the same optimality condition

0 = ρ(u∗ − ξ)−A>λ∗

0 ∈ λ∗ + ∂ψ(p∗)

0 = p∗ −Au∗
⇐⇒


0 = ρ(u∗ − ξ)−A>λ∗

0 = p∗ − proxψ(p∗ − λ∗)
0 = p∗ −Au∗ = 0

.

Hence, we consider the stopping criterion:

Res(k) := max {Res(uk), Res(pk), Res(λk)} 6 KKT Tol = 10−6, (5.18)

where the relative KKT residuals are defined by

Res(uk) :=

∥∥ρ(uk − ξ)−A>λk
∥∥

1 + ‖ξ‖
, Res(pk) :=

∥∥pk − proxψ(pk − λk)
∥∥

1 + ‖pk‖
and Res(λk) :=

‖pk −Auk‖
1 + ‖pk‖

.

For all methods, the maximal iteration number is kmax = 1e5. For inexact Im-PD (i.e. Algorithm 4), we run the
A-ADMM with 50 steps to obtain an initial guess (u0,p0,λ0) with max {Res(u0), Res(p0), Res(λ0)} ≈ 10−2

and choose the step size αk = 1 + σ where σ obeys the uniform distribution on [0, 1]. Then by Theorem 3.2, we

have the linear rate %k with % = E[ 1
1+αk

] =
∫ 1

0
1

2+σ dσ = ln 3/2 and the required iteration number for (5.18) is

about k∗ = −4 ln 10/ ln % ≈ 10.
Computational results are summarized in Table 2, including the number of iterations (its) and running

time (time). For Inexact Im-PD, we also report the total number of SsN iterations (SsN) and the time used
for initialization (warm-up). For all cases, PDHG has not achieved the tolerance (5.18) within the maximal
iteration number kmax = 105, and we also record the KKT residual Res(kmax) at the last iterate. As we can see,
Algorithm 4 outperforms much better than other two methods and the total iteration number is almost 10, as
expected above. Particularly, we observe that A-ADMM is more efficient than PDHG.

Moreover, in Figure 5, we plot the averaged PCG iteration number of Algorithm 4 for all cases. Similar as
before (cf. Fig. 2), it increases along with the iteration. Therefore, this deserves further study for more robust
and efficient linear solvers such as algebraic multilevel methods [50, 83].
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Figure 5. Averaged PCG iterations of Algorithm 4 for solving (5.8) with different noised input
images and regularization parameters.

6. Concluding remarks

In this work, we introduce a novel dynamical system, called primal-dual flow, for solving affine constrained
convex optimization. The current model is a modification of the standard saddle-point dynamics. In continuous
level, exponential decay of a tailored Lyapunov function is established. Then, in discrete level, primal-dual
type algorithms are obtained from proper time discretizations of the presented primal-dual flow and nonergodic
convergence rates are established via a unified discrete Lyapunov function.

The proposed methods adopt dynamically changing parameters and the subproblem with respect to the
multiplier is solved by the semi-smooth Newton iteration. This can be quite efficient provided that the problem
has nice properties such as semi-smoothness and sparsity, as showed by numerical results of the l1-l2 problem
and the total-variation based denoising model.

To the end, we list several ongoing works. First, well-posedness (existence and uniqueness) of the primal-dual
flow system (3.1) is an interesting topic. Also, the exponential decay property (2.9) and weak convergence of the
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trajectory under general nonsmooth setting deserves future investigations. Besides, rigorous convergence rate
analysis with inexact computation and restart technique requires further attentions.

Appendix A. An over-relaxation perspective

In Section 2.2, we introduced our primal-dual flow by adding the extra term x′, which is motivated from the
disappointing estimate in Lemma 2.1 and leads to the desired exponential decay, and later in Section 2.3, we
provided an equilibrium illustration to show further the positive effects of this correction.

To better understand the modification from the saddle-point system (1.4) to our new model (2.8), in this
appendix, by using the PPA-like interpretation [44], we give a discrete over-relaxation perspective, which indi-
cates somewhat subtle connection with the hidden symmetrization from the Arrow–Hurwicz algorithm [89] to
the PDHG method [16]. We hope this provides a more reasonably intrinsic explanation.

The Arrow–Hurwicz algorithm can be applied to (1.1) and reads as


xk+1 = argmin

x∈Rn

{
L(x, λk) +

1

2r
‖x− xk‖2

}
,

λk+1 = argmax
λ∈Rm

{
L(xk+1, λ)− 1

2τ
‖λ− λk‖2

}
,

(A.1)

with step sizes r, τ > 0. It also corresponds to a semi-implicit discretization for (1.4):
xk+1 − xk

r
∈ − ∂xL(xk+1, λk),

λk+1 − λk
τ

= ∇λL(xk+1, λk+1).

(A.2)

Following [44] and ([13], Chapt. 8), we use the PPA-like interpretation to demonstrate the lack of symmetry
of the Arrow–Hurwicz algorithm. Introduce

Z =

(
x

λ

)
, M(Z) =

(
∂f(x) +A>λ

b−Ax

)
and Q =

(
I/r −A>

O I/τ

)
,

where the maximally monotone operator M has been defined in (2.15). We then have the variational inequality
characterization for (A.1) (or (A.2)):

〈Q(Zk+1 − Zk) +M(Zk+1), Z − Zk+1〉 > 0 ∀Z ∈ Rn+m.

Taking Z = Z∗ ∈ Ω∗ and utilizing the fact: 0 ∈M(Z∗), we find that

1

2
‖Zk+1 − Z∗‖2Q −

1

2
‖Zk − Z∗‖2Q

= 〈Q(Zk+1 − Zk), Zk+1 − Z∗〉 −
1

2
‖Zk+1 − Zk‖2Q +

1

2

〈
(Q> −Q)(Zk+1 − Z∗), Zk − Z∗

〉
6 −〈M(Zk+1), Zk+1 − Z∗〉︸ ︷︷ ︸

60

−1

2
‖Zk+1 − Zk‖2Q +

1

2

〈
(Q> −Q)(Zk+1 − Z∗), Zk − Z∗

〉
6 − 1

2
‖Zk+1 − Zk‖2Q +

1

2

〈
(Q> −Q)︸ ︷︷ ︸

6=0

(Zk+1 − Z∗), Zk − Z∗
〉
.

(A.3)
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As Q is not symmetric, the last term makes it hard to obtain the descent estimate, and what’s even worse, the
scheme (A.1) is not necessarily convergent [42].

The PDHG method of Chambolle and Pock introduces a parameter θ ∈ [0, 1] and becomes
xk+1 = argmin

x∈Rn

{
L(x, λk) +

1

2r
‖x− xk‖2

}
,

λk+1 = argmax
λ∈Rm

{
L(xk+1 + θ(xk+1 − xk), λ)− 1

2τ
‖λ− λk‖2

}
,

(A.4)

which is also equivalent to 
xk+1 − xk

r
∈ − ∂xL(xk+1, λk),

λk+1 − λk
τ

= ∇λL(xk+1 + θ(xk+1 − xk), λk+1).

(A.5)

Comparing this with the previous discretization (A.2), we observe the additional extrapolation term xk+1 − xk.

For the case θ = 1, we have ergodic convergence rate O(1/k) under the condition rτ ‖A‖2 < 1. Moreover,
applying the above PPA-like framework to the PDHG method (with θ = 1), one observes that the estimate
(A.3) is now improved to

1

2
‖Zk+1 − Z∗‖2Q̂ −

1

2
‖Zk − Z∗‖2Q̂ 6 − 1

2
‖Zk+1 − Zk‖2Q̂ with Q̂ =

(
I/r −A>

−A I/τ

)
,

where Q̂ is a symmetrization of Q, due to the over-relaxation xk+1 − xk.
Surprisingly, instead of the original saddle-point system (1.4), the PDHG method (A.4) is more likely a time

discretization (cf. (A.5)) for the modified model{
x′ = −∇xL(x, λ),

λ′ = ∇λL(x+ x′, λ),

which differs from our primal-dual flow (2.8) only in the time scaling parameters. In conclusion, the extra
derivative x′ in ∇λL(x + x′, λ) corresponds to discrete over-relaxation xk+1 − xk in PDHG, which possibly
brings hidden symmetrization.

Acknowledgements. This work was supported by the NSFC project 11625101. The author would like to thank Professor
Jun Hu for useful comments and advices. Besides, the author want to thank the two anonymous reviewers, as the
manuscript was greatly benefit from their invaluable suggestions.

References
[1] T. Aspelmeier, C. Charitha and D.R. Luke, Local linear convergence of the ADMM/Douglas–Rachford algorithms without

strong convexity and application to statistical imaging. SIAM J. Imaging Sci. 9 (2016) 842–868.

[2] H. Attouch, Z. Chbani, J. Peypouquet and P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic
vanishing viscosity. Math. Program. Series B 168 (2018) 123–175.

[3] H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method, I. The continuous dynamical system: Global
exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system. Commun.
Contemp. Math. 2 (2000) 1–34.

[4] H. Attouch, J. Peypouquet and P. Redont, Fast convex optimization via inertial dynamics with Hessian driven damping. J.
Differ. Equ. 261 (2016).

[5] A. Beck, First-Order Methods in Optimization, volume 1 of MOS–SIAM Series on Optimization. Society for Industrial and
Applied Mathematics and the Mathematical Optimization Society (2017).



32 H. LUO

[6] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci.
2 (2009) 183–202.

[7] A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal-recovery problems, in D. Palomar and
Y. Eldar, editors, Convex Optimization in Signal Processing and Communications. Cambridge University Press, Cambridge
(2009) 42–88.

[8] D. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (2014).
[9] S. Bonettini and V. Ruggiero, On the convergence of primal–dual hybrid gradient algorithms for total variation image

restoration. J.Math. Imaging Vis. 44 (2012) 236–253.
[10] S. Boyd, N. Parikh, E. Chu and J. Peleato, B.and Eckstein, Distributed optimization and statistical learning via the alternating

direction method of multipliers. Found. Trends Mach. Learn. 3 (2010) 1–122.
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