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Abstract
This paper is devoted to the error analysis of a time-spectral algorithm for fractional diffusion
problems of order α (0 < α < 1). The solution regularity in the Sobolev space is revisited
and new regularity results in the Besov space are established. A time-spectral algorithm is
developed which adopts a standard spectral method and a conforming linear finite element
method for temporal and spatial discretizations, respectively. Optimal error estimates are
derived with nonsmooth data. Particularly, a sharp temporal convergence rate 1 + 2α is
shown theoretically and numerically.

Keywords Fractional diffusion problem · Finite element method · Spectral method · Jacobi
polynomial · Low regularity · Besov space · Optimal error estimate

1 Introduction

Let T > 0 be a finite time. This paper considers the following time fractional diffusion
equation:

⎧
⎪⎨

⎪⎩

Dα
0+(u − u0) − �u = f in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(0) = u0 in �,

(1)

where u0, f are known data, � ⊂ R
d (d = 1, 2, 3) is a convex polygonal domain and Dα

0+
is a Riemann–Liouville fractional differential operator with order α ∈ (0, 1); see Sect. 2.

The problem (1) is widely used in modeling of anomalous diffusion process [45,46] and
anomalous transport [38,65], for its capability of accurately describing models with non-
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locality and historical memory [23,52]. For theoretical study to the problem, e.g. the weak
solution and its regularity, we refer to [16,33,35,54].

Many numerical methods have been developed in the past a dozen years. Among existing
works, three types of temporal discretization are most prevailing, i.e., the finite difference
method (L-type schemes [2,24,36,41] and convolution quadrature methods [12,14,62,64]),
the finite element method [25,27,29,30] and the spectral method [26,35,55,66]. Under certain
circumstances, problem (1) has an equivalent form

⎧
⎪⎨

⎪⎩

ut − D1−α
0+ �u = g in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(0) = u0 in �,

(2)

where g = D1−α
0+ f . In the literature, both (1) and (2) are called time fractional diffusion

equations or time fractional subdiffusion equations. For the solution regularity and numerical
analysis of problem (2), especially in the case of nonsmooth data, we refer the reader to
[28,42,43,48,50,51].

It is well-known that the solution to problem (1) generally has boundary singularity (near
0+) in temporal direction. If f = 0 and u0 is (or not) smooth, or u0 = 0 and f is smooth,
then one can obtain growth estimates of the solution [19,20] or even find out the leading
singular term tα of the solution [33]. Due to the singularity, the accuracy 2 − α of the L1
scheme [36] deteriorates into 1 in the case of f = 0 and u0 �= 0, whether the initial data
u0 is smooth or not [21]. In the same situation, a piecewise constant discontinuous Galerkin
(DG) semidiscretization was analyzed in [44]. Let us summarize the error estimate results of
[21,44] as follows: for any temporal grid node t j = jτ with j = 1, 2, . . . , J and τ = T /J ,

∥
∥(u −U )(t j )

∥
∥
L2(�)

≤ C

{
tα−1
j τ ‖u0‖Ḣ2(�) , for L1 in [22]
t−1
j τ ‖u0‖L2(�) , for L1 in [22] and DG in [45]. (3)

Hence, if u0 ∈ L2(�), then the first order accuracy under L∞(0, T ; L2(�))-norm is
only achieved far away from the origin, and the global convergence rate degenerates as
t j approaches to zero; and if u0 ∈ Ḣ2(�), then the global rate reduces to τα . These error
estimates in (3) coincide with the solution regularity in Sobolev space (see Theorem 3.1):

⎧
⎨

⎩

ε3/2 |u|H1/2−ε (0,T ;L2(�)) ≤ Cα,T ‖u0‖L2(�) , 0 < ε ≤ 1/2,
√

2γ − γ 2 ‖u‖H (1+αγ )/2(0,T ;L2(�)) ≤ Cα,T ,� ‖u0‖Ḣγ (�) , 0 < γ < 2.

To improve the temporal accuracy, graded meshes were used in [24,49,58] and some
correction techniques were proposed in [13,22,31,63]. However, most of the existing works
using graded meshes require some assumption of growth estimate on the true solution, and
the analysis of correction schemes for (3) are mainly based on the Laplace transform, which
is only applicable for uniform temporal grids, and the obtained convergence rates have the
form t−q

j τ p with 0 < q ≤ p (like (3)), which deteriorates near the origin. In [32], several
technical stability results were developed to establish the optimal first order accuracy of a
piecewise constant DGmethod on graded meshes. Also, spectral methods with singular basis
functions were presented [7,55] but so far no rigorous convergence analysis is available with
low regularity data. In [9], a multi-domain Petrov–Galerkin spectral method with a singular
basis and geometrically gradedmeshes was proposed, and the exponential decay was verified
numerically with nonsmooth initial data. We are also aware of the recent work [8], where an
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exponentially convergent rational approximation scheme has been proposed for the spatial
semi-discretization of (1).

In the 1980s, Gui and Babuška [18] established the optimal approximation order 1 + 2β
under the L2-norm of the Legendre orthogonal expansion for the singular function (x + 1)β

on (−1, 1). Later Babuška and Suri [4] extended this to a p-version finite element method
for solving two dimensional elliptic equations, and proved the sharp rate 2β under the energy
norm, by assuming that the solution has the explicit singular expression rβ around the origin.
Note that these functions have boundary singularities as well but the achieved convergence
rates agree with their regularity in the Besov space.

In view of the boundary singularity of the solution to problem (1), one may wonder
whether this happens to the convergence behavior of a time-spectral method. For simplicity,
let us start with a fractional ordinary differential equation

Dα
0+(y − y0) + λy = 0 in (0, T ], (4)

where y0 ∈ R and λ > 0. Invoking the Laplace transform gives the solution expression

y(t) = y0

∞∑

k=0

(−λtα)k

�(αk + 1)
, 0 ≤ t ≤ T . (5)

Note that for a given fixed (small) λ > 0, we have y ∈ H1/2+α−ε(0, T ) for any ε > 0
(see Remark 3.1). We adopt a standard Legendre spectral method with polynomial degree
M ∈ N to seek an approximation YM and use Y100 as a reference solution. Figure 1 plots the
convergence order 1+ 2α under L2-norm in the case that λ = y0 = T = 1. This agrees with
the Besov regularity of (5): B1+2α−ε

−α,0 (0, T ) for any ε > 0; see Lemma 3.4. However, if λ is
extremely large or goes to infinity, then we see fromLemma 4.1 that the convergence rate will
be ruined (we also refer the reader to [9, Section 1.2] for detailed numerical investigations
in this case).

Fig. 1 Discretization errors of (4) with λ = y0 = T = 1. The predicted accuracy is M−1−2α
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As for the model problem (1) itself, although there exists a space-time spectral method
that has been proposed in [35], to our best knowledge, no such rate 1+2α has beenmentioned
numerically and established rigorously. It is nontrivial to obtain this since now the impact
of large λ comes from the negative Laplacian operator −� (or its discrete version −�h).
This motivates us to revisit the convergence analysis of the time-spectral method for time
fractional diffusion problem (1). Can we prove the optimal approximation order in terms
of Besov regularity with nonsmooth data? Especially, whether the accuracy 1 + 2α can be
established or improved?

In this work, we give partially positive answers to these questions mentioned above.
Optimal error estimates with respect to the solution regularity in Besov space are established
with low regularity data. Moreover, temporal convergence rates 1 + α and 1 + 2α under
Hα/2(0, T ; L2(�))-norm and L2(0, T ; Ḣ1(�))-norm are derived, respectively, which are
sharp and cannot be improved even for smoother data.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations,
including standard conventions, functional spaces and fractional calculus operators. Then in
Sect. 3, we define the weak solution and establish its regularity results in Sobolev space and
Besov space, and we present our main error estimates in Sect. 4. Finally, we conduct several
numerical experiments in Sect. 5 and give some concluding remarks in Sect. 6.

2 Preliminary

For ease of notation, we make some standard conventions. For a Lebesgue measurable subset
ω of Rl (l = 1, 2, 3), we use Hγ (ω) (γ ∈ R) and Hγ

0 (ω) (γ > 0) to denote two standard
Sobolev spaces [59]. Given 1 ≤ p < ∞, ifω is an interval andμ is a nonnegative measurable
function on ω, then L p

μ(ω) denotes the weighted L p-space, and the symbol 〈a, b〉μ means
∫

ω
abμ whenever ab ∈ L1

μ(ω); if ω is a Lebesgue measurable set of Rl(l = 1, 2, 3, 4), then
〈a, b〉ω stands for

∫

ω
ab whenever ab ∈ L1(ω); if X is a Banach space, then 〈·, ·〉X means

the duality pairing between X∗ (the dual space of X ) and X . In particular, if X is a Hilbert
space, then (·, ·)X means its inner product. If X and Y are two Banach spaces, then [X , Y ]θ,2

is the interpolation space constructed by the well-known K -method [5]. For k ∈ N and any
d-polytope ω ⊂ R

d(d = 1, 2, 3), Pk(ω) denotes the set of all polynomials defined on ω

with degree no more than k.
As we all know, L2(�) has an orthonormal basis {φn}∞n=0 such that [11]

{
− �φn = λnφn, in �,

φn = 0, on ∂�,

where {λn}∞n=0 is a nondecreasing real positive sequence and λ0 = ‖∇φ0‖2L2(�)
> 0 depends

only on �. For any γ ∈ R, define

Ḣγ (�) :=
{ ∞∑

n=0

cnφn :
∞∑

n=0

λ
γ
n c

2
n < ∞

}

and equip this space with the inner product
( ∞∑

n=0

cnφn,

∞∑

n=0

dnφn

)

Ḣγ (�)

:=
∞∑

n=0

λ
γ
n cndn, for all

∞∑

n=0

cnφn,

∞∑

n=0

dnφn ∈ Ḣγ (�).
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The induced norm is denoted by ‖·‖Ḣγ (�) =
√

(·, ·)Ḣγ (�). Note that Ḣγ (�) is a Hilbert

space and has an orthonormal basis {λ−γ /2
n φn}∞n=0.

Let 0H2(0, T ) := {
v ∈ H2(0, T ) : v(0) = v′(0) = 0

}
and equip this spacewith the norm

‖v‖
0H2(0,T ) := ∥

∥v′′∥∥
L2(0,T )

. Given any 0 < γ < 2, we introduce the space

0H
γ (0, T ) := [L2(0, T ), 0H

2(0, T )]γ /2,2.

Applying the interpolation theorem of bounded linear operators [39, Theorem 1.6] yields

‖v‖[L2(0,T ),H2(0,T )]γ /2,2
≤ ‖v‖

0Hγ (0,T ) ∀ v ∈ 0H
γ (0, T ). (6)

In addition, if 0 < γ < 1/2, then by [37, Chapter 1], the relation 0Hγ (0, T ) = Hγ (0, T )

holds in the sense of equivalent norms, and in this case (i.e., 0 < γ < 1/2) we have an
alternative norm, which is defined by

|w|Hγ (0,T ) :=
(∫

R

|ξ |2γ ∣∣F(wχ(0,T ))(ξ)
∣
∣2 dξ

)1/2

∀w ∈ Hγ (0, T ),

whereF : L2(R) → L2(R) is the Fourier transform andχ(0,T ) denotes the indicator function
of (0, T ).

Let X be a separable Hilbert space with an inner product (·, ·)X and an orthonormal basis
{en : n ∈ N}. For any γ ∈ R, let Hγ (0, T ; X) be a usual vector-valued Sobolev space
defined by (cf. [37, Section 1.3])

Hγ (0, T ; X) :=
{ ∞∑

n=0

vnen :
∞∑

n=0

‖vn‖2Hγ (0,T ) < ∞
}

, (7)

with the norm

‖v‖Hγ (0,T ;X) :=
( ∞∑

n=0

‖(v, en)X‖2Hγ (0,T )

)1/2

∀ v ∈ Hγ (0, T ; X).

The spaces L2
μa,b (0, T ; X) and 0Hγ (0, T ; X) for 0 < γ < 2 can be defined similarly as (7).

For a, b > −1, let {Sa,b
k }∞k=0 be the family of shifted Jacobi polynomials on (0, T ) with

respect to the weight μa,b(t) = (T − t)atb; see “Appendix A”. Given γ ≥ 0, we introduce
the Besov space (also known as the weighted Sobolev space, cf. [3]) defined by

B
γ

a,b(0, T ) :=
{ ∞∑

k=0

vk S
a,b
k :

∞∑

k=0

(1 + k2γ )ξ
a,b
k v2k < ∞

}

, (8)

where ξ
a,b
k is given by (80), and endow this space with the norm

‖v‖
B

γ
a,b(0,T ) :=

( ∞∑

k=0

(1 + k2γ )ξ
a,b
k v2k

)1/2

∀ v =
∞∑

k=0

vk S
a,b
k ∈ B

γ

a,b(0, T ).

In addition, for any separable Hilbert space X , the vector-valued space Bγ

a,b(0, T ; X) can be
defined in a similar way as that of (7).

To the end, let us introduce the Riemann–Liouville fractional calculus operators and list
some important lemmas. For any γ > 0 and v ∈ L1(0, T ; X), define the fractional integrals
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of order γ as follows:
(
D−γ
0+ v

)
(t) := 1

�(γ )

∫ t

0
(t − s)γ−1v(s) ds, t ∈ (0, T ),

(
D−γ

T− v
)

(t) := 1

�(γ )

∫ T

t
(s − t)γ−1v(s) ds, t ∈ (0, T ),

where �(·) denotes the Gamma function �(z) := ∫∞
0 t z−1e−t dt for z > 0. For k − 1 <

γ < k with positive integer k ∈ N+, define the left-sided and right-sided Riemann–Liouville
fractional derivative operators of order γ respectively by

Dγ
0+ := Dk Dγ−k

0+ , Dγ

T− := (−D)k Dγ−k
T− ,

where D is the first-order generalized derivative operator.

Lemma 2.1 [10] If −1/2 < γ < 1/2 and v, w ∈ Hmax{0,γ }(0, T ), then
〈
Dγ
0+ v,Dγ

T− v
〉

(0,T )
= cos(γ π) |v|2Hγ (0,T ) ,

cos(γ π)
∥
∥Dγ

0+ v
∥
∥2
L2(0,T )

≤ 〈
Dγ
0+ v,Dγ

T− v
〉

(0,T )
≤ sec(γ π)

∥
∥Dγ

0+ v
∥
∥2
L2(0,T )

,
〈
D2γ
0+ v,w

〉

Hγ (0,T )
= 〈

Dγ
0+ v,Dγ

T− w
〉

(0,T )
≤ |v|Hγ (0,T ) |w|Hγ (0,T ) .

Lemma 2.2 [40] If v ∈ 0Hγ (0, T ) with 0 < γ < 2, then

C1
∥
∥Dγ

0+ v
∥
∥
L2(0,T )

≤ ‖v‖
0Hγ (0,T ) ≤ C2

∥
∥Dγ

0+ v
∥
∥
L2(0,T )

,

where C1 and C2 depend only on γ .

3 Weak Solution and Regularity

This section is to revisit the solution regularity of problem (1) in terms of proper Sobolev
spaces and establish new regularity results in Besov spaces.

Following [27,35], we first introduce the weak solution to problem (1). To do so, set

X := Hα/2(0, T ; L2(�)) ∩ L2(0, T ; Ḣ1(�)), (9)

and endow this space with the norm

‖·‖X :=
(
|·|2Hα/2(0,T ;L2(�))

+ ‖·‖2
L2(0,T ;Ḣ1(�))

)1/2
.

Assuming that f + Dα
0+ u0 ∈ X ∗, we call u ∈ X a weak solution to problem (1) if

〈
Dα
0+ u, v

〉

Hα/2(0,T ;L2(�))
+ 〈∇u,∇v〉L2(0,T ;L2(�)) = 〈

f + Dα
0+ u0, v

〉

X ∀ v ∈ X . (10)

As mentioned in [27, Remark 2.2], the well-posedness of the weak formulation (10)
follows from the Lax–Milgram theorem andLemma 2.1.More precisely, if f +Dα

0+ u0 ∈ X ∗,
then problem (1) admits a unique weak solution in the sense of (10) such that

‖u‖X ≤ Cα

∥
∥ f + Dα

0+ u0
∥
∥X ∗ .

In the sequel, set γ0 := min{2, 1/α}. To establish more elaborate regularity estimates, we
apply the Galerkin method that reduces (10) to a family of ordinary differential equations,
to which the solutions can be used to recover the weak solution to (10) through a series
expression; see the lemma below.
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Proposition 3.1 Assume f ∈ L2(0, T ; Ḣ−1(�)) and u0 ∈ Ḣγ (�) where γ > 1 − γ0. The
solution to (10) is given by u = ∑∞

n=0 ynφn, where yn ∈ Hα/2(0, T ) satisfies
〈
Dα
0+
(
yn − yn,0

)
, z
〉

Hα/2(0,T )
+ λn〈yn, z〉(0,T ) = 〈 fn, z〉(0,T ), (11)

for all z ∈ Hα/2(0, T ), where yn,0 = 〈u0, φn〉Ḣγ (�) and fn = 〈 f , φn〉Ḣ1(�).

Proof The proof here is actually in line with that of [27, Theorem 3.1], where the case
0 < α < 1/2 has been considered. The case of 1/2 ≤ α < 1 follows similarly. ��

3.1 Regularity in Sobolev Space

We now revisit the Sobolev regularity of the solution to (10). Thanks to Proposition 3.1, this
can be done by investigating problem (11), which, in a general form, is equivalent to

Dα
0+(y − y0) + λy = g, (12)

where λ > 0, y0 ∈ R and g ∈ L2(0, T ). Indeed, in [27, Lemmas 3.1–3.3] we have estab-
lished corresponding regularity results via variational approach, and Sobolev regularities of
the weak solution have been given in [27, Theorems 3.1–3.3].

For the case u0 = 0, if f ∈ L2(0, T ; Ḣγ (�)) with −1 ≤ γ ≤ 1, then

‖u‖
0Hα(1+γ /2)(0,T ;L2(�)) + ‖u‖L2(0,T ;Ḣ2+γ (�)) ≤ Cα,T ‖ f ‖L2(0,T ;Ḣγ (�)) , (13)

and based on the proof of [27, Theorem 3.3], if f ∈ 0Hβ(0, T ; Ḣγ (�)) with −1 ≤ γ ≤ 1
and 0 < β ≤ 1, then we have

‖u‖
0Hα+β (0,T ;L2(�)) + ‖u‖

0Hβ (0,T ;Ḣ2+γ (�)) ≤ Cα,β,T ‖ f ‖
0Hβ (0,T ;Ḣγ (�)) . (14)

However, the implicit constant in [27, Lemma 3.2] blows up as the corresponding param-
eter θ goes to 1/α − 1 and the estimate in [27, Theorem 3.1] for the homogeneous case
f = 0 is not optimal. Therefore, in this section, we provide some improved results by using
the Mittag-Leffler function [47]

Eα,ν(z) :=
∞∑

k=0

zk

�(αk + ν)
, z ∈ C, ν ∈ R. (15)

Given any t > 0, it is well-known that (cf. [23])

∣
∣Eα,ν(−t)

∣
∣ ≤ Cα,ν

1 + t
. (16)

In addition, applying Laplace transform gives the solution to (12) with g = 0:

y(t) = y0Eα,1(−λtα), 0 ≤ t ≤ T . (17)

Lemma 3.1 Assume λ ≥ λ∗ > 0, then the function y(t) defined by (17) satisfies

η(ε)λγ0/2−1−ε ‖y‖Hα(0,T ) + λ(γ0−1)/2 ‖y‖Hα/2(0,T )

+η(ε)λγ0/2−ε ‖y‖L2(0,T ) ≤ Cα,λ∗,T |y0| , (18)
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where
{

η(ε) = 1, ε = 0, if α �= 1/2,

η(ε) = √
ε, ε ∈ (0, 1/2], if α = 1/2.

(19)

Moreover, we have

⎧
⎨

⎩

ε3/2 |y|H1/2−ε (0,T ) ≤ Cα,T |y0| , 0 < ε ≤ 1/2, (20)
√

2γ − γ 2 ‖y‖H (1+αγ )/2(0,T ) ≤ Cα,λ∗λ
γ/2 |y0| , 0 < γ < 2. (21)

Proof We first prove (18). Since the case 0 < α < 1/2 has been given by [27, Lemma 3.1],
we only consider the case 1/2 ≤ α < 1, which says that

η(ε)λ−1−ε ‖y‖Hα(0,T ) + λ−1/2 ‖y‖Hα/2(0,T ) + η(ε)λ−ε ‖y‖L2(0,T ) ≤ Cα,λ∗,T λ− 1
2α |y0| .

(22)

By (16) and direct calculations, we have

|η(ε)|2 λ−2−2ε
∣
∣
(
Dα
0+(y − y0)

)
(t)
∣
∣2 + λ−1

∣
∣
∣

(
Dα/2
0+ y

)
(t)
∣
∣
∣
2 + |η(ε)|2 λ−2ε |y(t)|2

≤ Cα |y0|2 |η(ε)|2 λ−2ε + λ−1t−α

(1 + λtα)2
,

(23)

for all 0 < t ≤ T . It is evident that

∫ T

0

λ−1t−α

(1 + λtα)2
dt ≤

∫ ∞

0

λ−1t−α

(1 + λtα)2
dt ≤

∫ λ− 1
α

0
λ−1t−α dt +

∫ ∞

λ− 1
α

λ−3t−3α dt

= Cαλ−1/α. (24)

If α = 1/2, then for 0 < ε ≤ 1/2 it holds
∫ T

0

λ−2ε

(1 + λtα)2
dt = λ− 1

α

∫ T

0

(λtα)1/α−2ε

(1 + λtα)2
t2αε−1 dt ≤ λ− 1

α

∫ T

0
t2αε−1 dt = Cα,T

ε
λ−1/α;

and if 1/2 < α < 1, then using a similar manner for estimating (24) gives
∫ T

0

1

(1 + λtα)2
dt ≤ Cαλ−1/α.

Hence, by Lemma 2.2, plugging the above estimates into (23) implies

η(ε)λ−1−ε ‖y − y0‖0Hα(0,T ) + λ−1/2 ‖y‖
0Hα/2(0,T ) + η(ε)λ−ε ‖y‖L2(0,T ) ≤ Cα,T λ− 1

2α |y0| ,
which, together with the fact (6) and the assumption λ ≥ λ∗ > 0, yields (22) immediately.

If 0 < ε ≤ 1/2, then using Lemma 2.1 and 16 gives

|y|2H1/2−ε (0,T )
≤ csc2 επ

∥
∥
∥D

1/2−ε
0+ y

∥
∥
∥
2

L2(0,T )
≤ Cα |y0|2

ε2

∫ T

0

t2ε−1

(1 + λtα)2
dt

≤ Cα |y0|2
ε2

∫ T

0
t2ε−1 dt = Cα,T |y0|2

ε3
,

which proves (20).
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To the end, we consider (21). Since 0 < γ < 2, we have 1/2 < (1 + αγ )/2 < α + 1/2.
By (16), Lemma 2.2 and straightforward calculations, we get

‖y − y0‖2
0H (1+αγ )/2(0,T )

≤ Cα

∫ T

0

∣
∣
∣

(
D(1+αγ )/2
0+ (y − y0)

)
(t)
∣
∣
∣
2
dt

≤ Cα |y0|2
∫ T

0

λ2tα(2−γ )−1

(1 + λtα)2
dt,

and we estimate the integral in a similar way for (24) to obtain

‖y − y0‖0H (1+αγ )/2(0,T ) ≤ Cαλγ/2 |y0|
√
2γ − γ 2

.

Therefore, from (6) and the assumption λ ≥ λ∗ > 0 it follows (21). ��
Remark 3.1 For any fixed λ > 0, from Lemma 3.1 we see that the highest regularity of y =
y0Eα,1(−λtα) is no more than H1/2+α(0, T ). Although we can establish higher regularity
(cf. [34]) for the smooth part Y = y − y0Sλ, where

Sλ(t) := 1 − λtα

�(α + 1)
, 0 ≤ t ≤ T ,

the final regularity for y = Y + y0Sλ is dominated by Sλ, which belongs to H1/2+α−ε(0, T )

due to the singular term tα .

Combining Proposition 3.1 and Lemma 3.1 gives the following conclusion.

Theorem 3.1 If f = 0 and u0 ∈ Ḣγ (�) with γ > 1 − γ0, then

η(ε) ‖u‖Hα(0,T ;Ḣγ0+γ−2−ε (�)) + ‖u‖Hα/2(0,T ;Ḣγ0+γ−1(�)) + η(ε) ‖u‖L2(0,T ;Ḣγ0+γ−ε (�))

≤ Cα,T ,� ‖u0‖Ḣγ (�) ,

where ε, η(ε) are defined by (19). Moreover,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε3/2 |u|H1/2−ε (0,T ;L2(�)) ≤ Cα,T ‖u0‖L2(�) , 0 < ε ≤ 1/2,
√

2γ − γ 2 ‖u‖H (1+αγ )/2(0,T ;L2(�)) ≤ Cα,T ,� ‖u0‖Ḣγ (�) , 0 < γ < 2,
√

2γ − γ 2 ‖u‖H (1+αγ )/2(0,T ;Ḣ1(�)) ≤ Cα,T ,� ‖u0‖Ḣγ+1(�) , 0 < γ < 2.

3.2 Regularity in Besov Space

We then consider the regularity of the solution to (10) in Besov spaces. As before, we start
from the auxiliary problem (12) and split it into two cases: y0 �= 0, g = 0; and y0 = 0, g �= 0.

To move on, let us present a useful expression of the Mittag-Leffler function (15); see [15,
Theorem 2.1].

Lemma 3.2 [15] If ν < 1 + α, then for all 0 < t < ∞, it holds that

Eα,ν(−t) = 1

πα

∫ ∞

0

r sin νπ − t sin(α − ν)π

r2 + t2 + 2r t cosαπ
r (1−ν)/αe−r1/αdr .

Clearly, by definition (15), we have Eα,ν(0) = 1/�(ν) for any ν ∈ R\{−1,−2, . . .} and
thus Eα,ν(−t) is bounded near t = 0+. Below, we give a refined estimate that implies the
asymptotic behavior of Eα,ν(−t). Note that this has no contractionwith the boundness around
t = 0+ and what we are interested in is t → ∞.
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Lemma 3.3 If ν < 1, then for all 0 < t < ∞,
∣
∣Eα,ν(−t)

∣
∣ ≤ Cα�(1 − ν + θα)t−θ , (25)

where 0 ≤ θ ≤ 1. Moreover, if α − ν ∈ Z, then (25) holds with 0 ≤ θ ≤ 2.

Proof By Lemma 3.2, we have

Eα,ν(−t) = 1

πα

∫ ∞

0
r (1−ν)/αe−r1/αϕα,ν(r , t) dr , (26)

where

ϕα,ν(r , t) := r sin νπ − t sin(α − ν)π

r2 + 2r t cosαπ + t2
.

In light of the estimate

r2 + 2r t cosαπ + t2 ≥ 1 + cosαπ

2
(r + t)2 (27)

and the arithmetic-geometric mean inequality (cf. [57, page 4])

r1−θ tθ ≤ (1 − θ)r + θ t, 0 ≤ θ ≤ 1, (28)

we obtain that

∣
∣ϕα,ν(r , t)

∣
∣ ≤ Cα

r + t
≤ Cαr

θ−1t−θ . (29)

Therefore, inserting (29) into (26) gives

∣
∣Eα,ν(−t)

∣
∣ ≤ Cαt

−θ

∫ ∞

0
e−r1/α (r1/α)(θ−1)α+1−ν dr

= Cαt
−θ

∫ ∞

0
e−ssθα−ν ds = Cα�(1 + θα − ν)t−θ ,

which establishes (25). Moreover, if α − ν ∈ Z, then

ϕα,ν(r , t) = r sin νπ

r2 + 2r t cosαπ + t2
,

and from (27) and (28) it follows
∣
∣ϕα,ν(r , t)

∣
∣ ≤ Cαr

θ−1t−θ , 0 ≤ θ ≤ 2,

which maintains the estimate (25) and enlarges the range of θ . This completes the proof. ��

Based on Lemma 3.3, we are able to establish the following lemma.

Lemma 3.4 Assume −1 ≤ θ ≤ 1 with 1 + 2αθ > 0, then the function y defined by (17)
satisfies

‖y‖
B
1+2αθ−ε
−α,0 (0,T )

≤ Cα,T√
ε

λθ |y0| , (30)

for any 0 < ε ≤ 1 + 2αθ .
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Proof By (16), it is evident that y ∈ L2
μ−α,0(0, T ) and we have the orthogonal decomposition

y = ∑∞
k=0 yk S

−α,0
k , where {S−α,0

k }∞k=0 denotes the shifted Jacobi polynomials on (0, T )with
respect to the weight μ−α,0(t) = (T − t)−α (see “Appendix A”), and

yk = 1

ξ
−α,0
k

〈
y, S−α,0

k

〉

μ−α,0
, ξ

−α,0
k = T 1−α

2k + 1 − α
. (31)

According to the definition (8), it suffices to investigate the asymptotic behavior of the
coefficient yk . Let us fix k ∈ N+. By Rodrigues’ formula (79), we have

〈
y, S−α,0

k

〉

μ−α,0
= (−1)k

T kk!
〈

y,
dk

dtk
μk−α,k

〉

(0,T )

. (32)

Using integration by parts gives

〈

y,
dk

dtk
μk−α,k

〉

(0,T )

=
k−1∑

i=0

(−1)i
(
ζi (T ) − ζi (0)

)+ (−1)k
〈
y(k), μk−α,k

〉

(0,T )
,

where

ζi (t) = y(i)(t)

(
dk−i−1

dtk−i−1 μk−α,k
)

(t) = y(i)(t)
k−i−1∑

j=0

Cα,i, j,kμ
k−α− j,i+1+ j (t).

From (17) we have the identity

y(i)(t) = − λy0t
α−i Eα,α+1−i (−λtα), 0 ≤ i < k, (33)

and it follows that ζi (0) = ζi (T ) = 0 for all 0 ≤ i < k. Thus, we obtain the relation
〈

y,
dk

dtk
μk−α,k

〉

(0,T )

= (−1)k
〈
y(k), μk−α,k

〉

(0,T )
. (34)

Invoking (33) and Lemma 3.3 yields the inequality
∣
∣
∣y(k)(t)

∣
∣
∣ ≤ Cα�(k − θα) |y0| λθ tθα−k, (35)

where −1 ≤ θ ≤ 1. In addition, we have a useful formula (cf. [56, Appendix, (A.6)])
∥
∥
∥μ

a,b
∥
∥
∥
L1(0,T )

= T a+b+1 �(a + 1)�(b + 1)

�(a + b + 2)
, a, b > −1, (36)

which, together with (35), indicates that
∣
∣
∣
∣

〈
y(k), μk−α,k

〉

(0,T )

∣
∣
∣
∣ ≤ Cα |y0| λθ�(k − θα)

∥
∥
∥μ

k−α,θα
∥
∥
∥
L1(0,T )

= Cα,T |y0| λθT k · �(k + 1 − α)�(k − θα)

�(k + 2 + (θ − 1)α)
.

(37)

Observe Stirling’s formula [1, Eq. (6.1.38)]

�(z + 1) = √
2π zz+1/2eθ(z)/(12z)−z, 0 < θ(z) < 1, z > 0. (38)

Therefore, collecting (32),(34) and (37) gives
∣
∣
∣
∣

〈
y, S−α,0

k

〉

μ−α,0

∣
∣
∣
∣ ≤ Cα,T |y0| λθ �(k + 1 − α)�(k − θα)

k!�(k + 2 + (θ − 1)α)
≤ Cα,T |y0| λθk−2−2θα. (39)
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As a result, for any 0 < ε ≤ 1 + 2αθ , we have

‖y‖2
B
1+2αθ−ε
−α,0 (0,T )

=
∞∑

k=0

1 + k2+4αθ−2ε

ξ
−α,0
k

∣
∣
∣
∣

〈
y, S−α,0

k

〉

μ−α,0

∣
∣
∣
∣

2

≤ Cα,T |y0|2 λ2θ

(

1 +
∞∑

k=1

k−1−2ε

)

≤ Cα,T |y0|2 λ2θ
(

1 +
∫ ∞

1
r−1−2ε dr

)

≤ Cα,T

ε
|y0|2 λ2θ ,

(40)

which shows (30) and finishes the proof of this lemma. ��
Remark 3.2 As mentioned in Remark 3.1, the best regularity of y(t) = y0Eα,1(−λtα) is
no more than H1/2+α(0, T ). However, from Lemma 3.4 we know that y ∈ B

1+2α−ε
−α,0 (0, T ),

which can not be improved due to the singular term tα , and the optimal rate 1 + 2α of the
standard Legendre spectral method under L2-norm has been validated numerically in Fig. 1.

For another case: y0 = 0, g �= 0, according to [23, Proposition 5.10], the solution y to (12)
can be represented as follows

y(t) =
∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)g(s) ds, 0 < t ≤ T , (41)

and by the proof of [27, Lemma 3.3], if g ∈ 0Hβ(0, T ) with β ≥ 0, then we have

‖y‖
0Hα+β (0,T ) + λ ‖y‖L2(0,T ) ≤ Cα,β,T ‖g‖

0Hβ (0,T ) .

In particular, for g(t) = g0tσ with σ > −1/2, a direct computation gives

y(t) = �(σ + 1)g0t
α+σ Eα,α+σ+1(−λtα), 0 < t ≤ T . (42)

Analogous to Lemma 3.4, we have the following regularity estimate.

Lemma 3.5 Assume σ > −1/2 and 0 ≤ θ ≤ 1, then the function y defined by (42) satisfies

‖y‖
B
1+2σ+2αθ−ε
−α,0 (0,T )

≤ Cα,σ,T√
ε

|g0| λθ−1, (43)

for all 0 < ε ≤ 1 + 2σ . Moreover, if α + σ ∈ N, then we can take θ ∈ [0, 2].
Proof Since σ > −1/2, again by (16), we have y ∈ L2

μ−α,0(0, T ), andwe have the orthogonal

decomposition y = ∑∞
k=0 yk S

−α,0
k , where yk and ξ

−α,0
k are defined in (31).

If α + σ /∈ N, then

y(k)(t) = �(σ + 1)g0t
α+σ−k Eα,α+σ+1−k(−λtα) ∀ k ∈ N. (44)

For k > α + σ , invoking Lemma 3.3 yields the estimate:
∣
∣
∣y(k)(t)

∣
∣
∣ ≤ Cα�(σ + 1) |g0| λθ−1tθα+σ−k�(k − σ − θα), 0 < t ≤ T , (45)

where 0 ≤ θ ≤ 1. Hence, by using Rodrigues’ formula (79) and integration by parts, a
similar argument as that for (34) gives

〈
y, S−α,0

k

〉

μ−α,0
= 1

T kk!
〈
y(k), μk−α,k

〉

(0,T )
, (46)
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Fig. 2 Discretization errors of (12) with λ = T = 1, y0 = 0 and g(t) = tσ . The predicted accuracies are
M−1−2σ−2α and M−1−2σ−4α , respectively for σ + α /∈ N and σ + α ∈ N

and from (36) and (45) we obtain
∣
∣
∣
∣

1

T kk!
〈
y(k), μk−α,k

〉

(0,T )

∣
∣
∣
∣ ≤ Cα,σ |g0| λθ−1 �(k − σ − θα)

T k�(k + 1)

∥
∥
∥μ

k−α,σ+θα
∥
∥
∥
L1(0,T )

≤ Cα,σ,T |g0| λθ−1 · �(k − α + 1)

�(k + 1)
· �(k − σ − θα)

�(k − α + σ + θα + 2)
.

This together with (38) implies that
∣
∣
∣
∣

〈
y, S−α,0

k

〉

μ−α,0

∣
∣
∣
∣ ≤ Cα,σ,T |g0| λθ−1k−2−2σ−2θα. (47)

Note that for k < α + σ , using (16),(28) and (44) gives
∣
∣
∣y(k)(t)

∣
∣
∣ ≤ Cα�(σ + 1) |g0| λθ−1tθα+σ−k, 0 < t ≤ T ,

where 0 ≤ θ ≤ 1. Thus the estimate (47) holds true for all k ∈ N+ and θ ∈ [0, 1].
On the other hand, if α + σ ∈ N, then we find that for all k ∈ N,

y(k)(t) =
{

�(σ + 1)g0t
α+σ−k Eα,α+σ+1−k(−λtα), if k ≤ α + σ,

− λ�(σ + 1)g0t
2α+σ−k Eα,2α+σ+1−k(−λtα), if k > α + σ.

Thus, we still have the identity (46) and by Lemma 3.3, the estimate (47) holds true for all
k ∈ N+ and θ ∈ [0, 2]. Hence, using the proof of (40) leads to the desired estimate (43). ��

To illustrate the maximal regularity in Lemma 3.5, we adopt a standard Legendre spectral
method to solve (12) with λ = T = 1, y0 = 0 and g(t) = tσ . In Fig. 2, we report
the numerical results under L2-norm and observe the convergence rates M−1−2σ−2α and
M−1−2σ−4α , respectively for α + σ /∈ N and α + σ ∈ N.

Finally, recall Proposition 3.1, which says u = ∑∞
n=0 ynφn with yn solving the ordinary

differential equation (11), and gathering Lemmas 3.4 and 3.5 implies the following regularity
results.
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Theorem 3.2 If f = 0 and u0 ∈ Ḣγ (�) with γ > 1 − γ0, then

‖u‖
B
1+α(γ−β)−ε
−α,0 (0,T ;Ḣβ (�))

≤ Cα,T√
ε

‖u0‖Ḣγ (�) , (48)

where γ − 2 ≤ β ≤ γ + 2 and 0 < ε ≤ 1 + α(γ − β).

Proof By definition, we have

‖u‖2
B
1+α(γ−β)−ε
−α,0 (0,T ;Ḣβ (�))

=
∞∑

n=0

λβ
n ‖yn‖2

B
1+α(γ−β)−ε
−α,0 (0,T )

.

Since u0 = ∑∞
n=0 yn,0φn and yn = yn,0Eα,1(−λntα), it follows from Lemma 3.4 that

‖u‖2
B
1+α(γ−β)−ε
−α,0 (0,T ;Ḣβ (�))

≤ Cα,T

ε

∞∑

n=0

λ
γ
n
∣
∣yn,0

∣
∣2 = Cα,T

ε
‖u0‖2Ḣγ (�)

,

provided that −1 ≤ (γ − β)/2 ≤ 1 and 0 < ε ≤ 1 + α(γ − β). ��
Theorem 3.3 Assume σ > −1/2 and γ ≥ −1. If u0 = 0 and f = tσ v with v ∈ Ḣγ (�),
then

‖u‖
B
1+2σ+α(2+γ−β)−ε
−α,0 (0,T ;Ḣβ (�))

≤ Cα,σ,T√
ε

‖v‖Ḣγ (�) ,

where γ ≤ β ≤ 2+γ and 0 < ε ≤ 1+2σ . Particularly, ifα+σ ∈ N, then γ −2 ≤ β ≤ γ +2.

4 Discretization and Error Analysis

Let Kh be a conventional conforming and shape regular simplical triangulation of � that
consists of d-simplexes, and we use h to denote the maximum diameter of the elements in
Kh . Define

Xh := {
vh ∈ Ḣ1(�) : vh |K ∈ P1(K ) ∀ K ∈ Kh

}
.

In the sequel, let �T := � × (0, T ) and M ∈ N. The time-spectral method for problem (1)
reads as follows: find U ∈ PM (0, T ) ⊗ Xh such that

〈
Dα
0+ U , V

〉

Hα/2(0,T ;L2(�))
+ 〈∇U ,∇V 〉�T

= 〈
f + Dα

0+ u0, V
〉

PM (0,T )⊗Xh
(49)

for all V ∈ PM (0, T ) ⊗ Xh . It is easy to see that (49) admits a unique solution U ∈
PM (0, T ) ⊗ Xh such that

‖U‖X ≤ Cα

∥
∥ f + Dα

0+ u0
∥
∥X ∗ ,

where the space X and its norm ‖·‖X are defined in Sect. 3.
We now present our main error estimates. Note that all of the following results are optimal.

Also, we emphasis that, in Theorem 4.1, the best temporal convergence orders 1 + α and
1 + 2α under Hα/2(0, T ; L2(�))-norm and L2(0, T ; Ḣ1(�))-norm are sharp and cannot
be improved even for smoother initial data. As for Theorem 4.2, we restrict ourselves to a
special case f (t, x) = tσ v(x), and the obtained temporal convergence rates 1 + 2σ + α

and 1 + 2σ + 2α are also sharp even for smoother v. Those predictions are verified by our
numerical results in Sect. 5.
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Theorem 4.1 If f = 0 and u0 ∈ Ḣγ (�) with 1 − γ0 < γ ≤ 3, then

‖u −U‖L2(0,T ;Ḣ1(�)) �
(
εhh

min{1,γ0+γ−1} + M−1−α(γ−1)
)

‖u0‖Ḣγ (�) , (50)

‖u −U‖Hα/2(0,T ;L2(�)) �
(
hmin{2,γ0+γ−1} + M−1−αmin{1,γ−1}) ‖u0‖Ḣγ (�) , (51)

where εh = 1 if α �= 1/2, and εh = √|ln h| if α = 1/2.

Theorem 4.2 Assume −1 ≤ γ ≤ 1 and σ > (α − 1)/2. If u0 = 0 and f (t, x) = tσ v(x)
with v ∈ Ḣγ (�), then

‖u −U‖Hα/2(0,T ;L2(�)) �
(
hmin{2,γ+2} + M−1−2σ−αmin{1,γ+1}) ‖v‖Ḣγ (�) , (52)

‖u −U‖L2(0,T ;Ḣ1(�)) �
(
hmin{1,γ+1} + M−1−2σ−α(γ+1)

)
‖v‖Ḣγ (�) , (53)

In addition, if α + σ ∈ N and v ∈ Ḣγ (�) with −1 ≤ γ ≤ 3, then (53) still holds true and
the temporal rate in (52) shall be M−1−2σ−αmin{3,γ+1}.

Remark 4.1 By Remark 4.4 and the proof of Theorem 4.1, if the true solution is u(x, t) =
tσ φ(x) with σ > (α − 1)/2 and φ ∈ Ḣ2(�), then we have

‖u −U‖L2(0,T ;Ḣ1(�)) �
(
h + M−1−2σ ) ‖φ‖Ḣ2(�) ,

‖u −U‖Hα/2(0,T ;L2(�)) �
(
h2 + Mα−1−2σ ) ‖φ‖Ḣ2(�) .

(54)

Remark 4.2 Although in Theorem 4.2 we only give the rigorous error estimates for a special
singular right hand side f = tσ v(x), we hope this is helpful for understanding the conver-
gence behavior for general f . Indeed, regardless of the spatial regularity, we conclude that:
(i) if f is smooth in time but not vanishing at t = 0, then the best temporal convergence rate
is 1+2α; if f is smooth (away from the original point) and behaves like tσ near t = 0+, then
the best rate is 1+2σ +2α; in addition, if α+σ ∈ N, then we have a faster rate 1+2σ +4α.

4.1 Technical Lemmas

Let Rh : Ḣ1(�) −→ Xh be the well-known Ritz projection operator

〈∇(I − Rh)v,∇vh〉 = 0 ∀ vh ∈ Xh, (55)

for which we have the standard estimate [53]

‖(I − Rh)v‖L2(�) + h ‖(I − Rh)v‖Ḣ1(�) � hγ ‖v‖Ḣγ (�) ∀ v ∈ Ḣγ (�), 1 ≤ γ ≤ 2.

For a, b > −1, denote by �
a,b
M : L2

μa,b (0, T ) → PM (0, T ) the L2
μa,b -orthogonal pro-

jection onto PM (0, T ) (cf. “Appendix A”). Assume X is a separable Hilbert space with
an orthonormal basis {en}∞n=0 and PM ([0, T ]; X) is the space of all polynomials (degree
≤ M) over (0, T ) with coefficients in X (see [60]). Following [26, Section 4], we can extend
�

a,b
M to the vector-valued case �

a,b
M,X : L2

μa,b (0, T ; X) → PM ([0, T ]; X) by that: for all

v = ∑∞
n=0 vnen with vn ∈ L2

μa,b (0, T ), define �
a,b
M,Xv := ∑∞

n=0 en�
a,b
M vn . Clearly, the case

X = R boils down to �
a,b
M,R

= �
a,b
M .

Recall that {λ−γ /2
n φn}∞n=0 is an orthonormal basis of Ḣγ (�), and by definition, we claim

that

�
a,b
M,Ḣγ (�)

v = �
a,b
M,L2(�)

v ∀ v ∈ Ḣγ (�), (56)
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for all γ > 0. Suppose X and Y are two separable Hilbert spaces and A : X → Y is a
bounded linear operator. Analogous to [26, Lemma 5.6], we have the commutativity

�
a,b
M,Y Av = A�

a,b
M,Xv ∀ v ∈ L2

μa,b (0, T ; X). (57)

In particular, there holds that

�
−α,0
M,Xh

Rhv = Rh�
−α,0
M,Ḣ1(�)

v = Rh�
−α,0
M,L2(�)

v ∀ v ∈ X . (58)

Moreover, by Lemma A.1, for all v ∈ X ,
〈
Dα
0+(I − �

−α,0
M,Xh

)Rhv, V
〉

Hα/2(0,T ;L2(�))
= 0 ∀ V ∈ PM (0, T ) ⊗ Xh . (59)

This can be verified directly by definition; we also refer to the discussion in [26, Remark
4.2]. For clarity, we provide the detailed proof of (57) in “Appendix B”.

When no confuse arises, we simply write �
−α,0
M,L2(�)

u = �
−α,0
M u , where u = ∑∞

n=0 ynφn

is the unique weak solution to (10) and yn ∈ Hα/2(0, T ). By the stability estimate (85), we
have that

∥
∥
∥�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;Ḣγ (�))

� ‖u‖Hα/2(0,T ;Ḣγ (�)) , 0 ≤ γ ≤ 2, (60)

and moreover,

u − �
−α,0
M u =

∞∑

n=0

φn(I − �
−α,0
M )yn, (61)

which means the projection error of u is related to the scalar case (I − �
−α,0
M )yn , where yn

solves the ordinary differential equation (11).
In what follows, we give some nontrivial projection error bounds in terms of the solution

to (12). The decay estimates of yk established in Lemmas 3.4 and 3.5 are enough to provide
optimal rate in the L2

μ−α,0(0, T )-norm.Moreover, we shall utilize it to prove the error estimate
under the fractional norm |·|Hα/2(0,T ).

Lemma 4.1 Let y be given by (17) with λ > 0 and y0 ∈ R, then
∥
∥
∥
(
I − �

−α,0
M

)
y
∥
∥
∥
L2

μ−α,0 (0,T )
≤ Cα,T |y0| λθ M−1−2αθ , (62)

where −1 ≤ θ ≤ 1 and 1 + 2αθ > 0.

Proof According to the proof of Lemma 3.4,

∥
∥
∥
(
I − �

−α,0
M

)
y
∥
∥
∥
2

L2
μ−α,0 (0,T )

=
∞∑

k=M+1

|yk |2 ξ
−α,0
k ≤ Cα,T

∞∑

k=M+1

|yk |2
k

,

where yk and ξ
−α,0
k are defined by (31). Thanks to (39), we have

∥
∥
∥
(
I − �

−α,0
M

)
y
∥
∥
∥
2

L2
μ−α,0 (0,T )

≤ Cα,T |y0|2 λ2θ
∞∑

k=M+1

k−3−4θα

≤ Cα,T |y0|2 λ2θ
∫ ∞

M
r−3−4θα dr=Cα,T |y0|2 λ2θ M−2−4θα.

(63)

This establishes (62) and finishes the proof of this lemma. ��
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Remark 4.3 It is clear that L2
μ−α,0(0, T ) ↪→ L2(0, T ). Hence, we conclude from Lemma 4.1

that
∥
∥
∥(I − �

−α,0
M )y

∥
∥
∥
L2(0,T )

≤ Cα,T |y0| λθ M−1−2αθ ,

where −1 ≤ θ ≤ 1 and 1 + 2αθ > 0.

Lemma 4.2 Let y be given by (17) with λ > 0 and y0 ∈ R, then
∣
∣
∣(I − �

−α,0
M )y

∣
∣
∣
Hα/2(0,T )

≤ Cα,T |y0| λθ Mα−1−2αθ , (64)

where −1 ≤ θ ≤ 1 and 1 + 2αθ > α.

Proof By (18), we see y ∈ Hα/2(0, T ) and from [17, Theorem 1.4.4.3], we know that
v ∈ L2

μ−α (0, T ), where μ−α(t) = (T − t)−αt−α . Recall the coefficient yk defined by (31)

and set z := (I − �
−α,0
M )y = ∑∞

k=M+1 yk S
−α,0
k . By (82), we have

Dα/2
0+ z =

∞∑

k=M+1

yk�(k + 1)

�(k + 1 − α/2)
t−α/2S−α/2

k . (65)

Here, we changed the order of the summation and the fractional derivative operator
and the identity (65) holds true in L2(0, T ). To verify this, it is enough to check that
Dα/2
0+ y = ∑∞

k=0 yk D
α/2
0+ S−α,0

k in L2(0, T ). Indeed, this follows from Lemma 2.1 and the

fact lim
M→∞ |(I − �

−α,0
M )y|Hα/2(0,T ) = 0; see Lemma A.1.

On the other hand, since z ∈ L2
μ0,−α (0, T ), we have the orthogonal expansion (see (81)):

z =
∞∑

k=0

zk S
0,−α
k with zk = 2k + 1 − α

T 1−α

〈
z, S0,−α

k

〉

μ0,−α
,

and it follows from (83) that

Dα/2
T− z =

∞∑

k=0

zk�(k + 1)

�(k + 1 − α/2)
(T − t)−α/2S−α/2

k .

Similar with (65), this holds true in L2(0, T ). Hence, from Lemma 2.1 and the orthogonality
of {S−α/2

k }∞k=0 with respect to the weight μ−α/2(t) = (T − t)−α/2t−α/2, we obtain

cos(απ/2)|z|2Hα/2(0,T )
=
〈
Dα/2
0+ z,Dα/2

T− z
〉

(0,T )
=

∞∑

k=M+1

ykzk�(k + 1)T 1−α

(2k + 1 − α)�(k + 1 − α)
.

(66)

By Rodrigues’ formula (79), we have

yk = (−1)k
2k + 1 − α

T k+1−αk!
〈

y,
dk

dtk
μk−α,k

〉

(0,T )

,

zk = (−1)k
2k + 1 − α

T k+1−αk!
〈

z,
dk

dtk
μk,k−α

〉

(0,T )

.
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It follows from (32) and (34) that
〈

y,
dk

dtk
μk−α,k

〉

(0,T )

= (−1)k
〈
y(k), μk−α,k

〉

(0,T )
.

When k ≥ M + 1, we have z(k)(t) = y(k)(t). Therefore, applying the proof of (34) gives
〈

z,
dk

dtk
μk,k−α

〉

(0,T )

= (−1)k
〈
y(k), μk,k−α

〉

(0,T )
.

Substituting the above two identities into (66) implies

cos(απ/2)|z|2Hα/2(0,T )
=

∞∑

k=M+1

2k + 1 − α

T 1−α
·
〈
y(k), μk−α,k

〉

(0,T )

T k�(k + 1 − α)
·
〈
y(k), μk,k−α

〉

(0,T )

T k�(k + 1)
.

(67)

In view of (37), it follows that
〈
y(k), μk−α,k

〉

(0,T )

T k�(k + 1 − α)
≤ Cα,T · |y0| λβ�(k − βα)

�(k + 2 + (β − 1)α)
, (68)

for all −1 ≤ β ≤ 1. Analogously, one has
〈
y(k), μk,k−α

〉

(0,T )

T k�(k + 1)
≤ Cα,T · |y0| λγ �(k − γα)

�(k + 2 + (γ − 1)α)
, (69)

for arbitrary −1 ≤ γ ≤ 1.
Consequently, plugging the above two estimates into (67) and applying Stirling’s formula

(38) yield that

|z|2Hα/2(0,T )
≤ Cα,T |y0|2 λβ+γ

∞∑

k=M+1

k�(k − βα)

�(k + 2 + (β − 1)α)
· �(k − γα)

�(k + 2 + (γ − 1)α)

≤ Cα,T |y0|2 λβ+γ
∞∑

k=M+1

k2α−3−2α(β+γ ).

Let θ = (β +γ )/2 ∈ [−1, 1] be such that 1+2αθ > α. Then using the proof of (63) implies
the desired estimate (64) and concludes the proof of this lemma. ��
Remark 4.4 To get (64), the key is to establish (68) and (69), which are easy to obtain for the
singular function y(t) = tσ . Hence, according to the proofs of Lemmas 4.1 and 4.2, it is not
hard to conclude the following estimate:

∥
∥
∥(I − �

−α,0
M )y

∥
∥
∥
L2

μ−α,0 (0,T )
+ M−α

∣
∣
∣(I − �

−α,0
M )y

∣
∣
∣
Hα/2(0,T )

≤ Cα,σ,T M
−1−2σ ,

where σ > (α − 1)/2. We mention that the optimal rate 1 + 2σ of the Legendre projection
under L2-norm has already been proved in [18, Theorem 5]. See also some similar results
in [61, Lemma 3.3 and Theorem 3.5] for the estimate of (I − �

α,0
M )y under the weighted

L2
μα,0 -norm.

For the particular case: y0 = 0, g(t) = g0tσ , we can also prove optimal projection error
bounds for the solution to the auxiliary problem (12). Indeed, by the previous two estimates
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(45) and (47), we are able to establish the corresponding key results like (68) and (69). Since
the proof techniques are almost the same as that of Lemmas 4.1 and 4.2, we omit the details
and only list the main results as follows.

Lemma 4.3 Let y be given by (42) with g0 ∈ R, λ > 0 and σ > −1/2. Then for any
0 ≤ θ ≤ 1, we have

∥
∥
∥
(
I − �

−α,0
M

)
y
∥
∥
∥
L2

μ−α,0 (0,T )
≤ Cα,σ,T |g0| λθ−1M−1−2σ−2θα, (70)

and if σ > (α − 1)/2, then
∣
∣
∣(I − �

−α,0
M )y

∣
∣
∣
Hα/2(0,T )

≤ Cα,σ,T |g0| λθ−1Mα−1−2σ−2αθ . (71)

Moreover, if α + σ ∈ N, then we can take θ ∈ [0, 2] for both (70) and (71) .

Below, we present a lemma that connects the above projection errors with our desired
estimates. Recall that the space X is given in (9) and X ∗ denotes its dual space.

Lemma 4.4 If f + Dα
0+ u0 ∈ X ∗, then

‖u −U‖Hα/2(0,T ;L2(�)) �
∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥X

+ ‖(I − Rh)u‖Hα/2(0,T ;L2(�))

+
∥
∥
∥(I − Rh)�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;L2(�))

,
(72)

and moreover,

‖u −U‖L2(0,T ;Ḣ1(�)) � ‖(I − Rh)u‖X +
∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥
L2(0,T ;Ḣ1(�))

. (73)

Proof By (10), for any V ∈ PM (0, T ) ⊗ Xh , we have
〈
Dα
0+ u, V

〉

Hα/2(0,T ;L2(�))
+ 〈∇u,∇V 〉�T

= 〈
f + Dα

0+ u0, V
〉

X ,

which, together with (49), gives the error equation
〈
Dα
0+(u −U ), V

〉

Hα/2(0,T ;L2(�))
+ 〈∇(u −U ),∇V 〉�T

= 0 ∀ V ∈ PM (0, T ) ⊗ Xh .

(74)

Hence it follows that
〈
Dα
0+(U − W ), V

〉

Hα/2(0,T ;L2(�))
+ 〈∇(U − W ),∇V 〉�T

= 〈
Dα
0+(u − W ), V

〉

Hα/2(0,T ;L2(�))
+ 〈∇(u − W ),∇V 〉�T

,

where W = �
−α,0
M,Xh

Rhu. Applying (55) and (59) and the fact �
−α,0
M,Xh

Rhu = Rh�
−α,0
M u (cf.

(58)) yields the identity
〈
Dα
0+(U − W ), V

〉

Hα/2(0,T ;L2(�))
+ 〈∇(U − W ),∇V 〉�T

= 〈
Dα
0+(u − Rhu), V

〉

Hα/2(0,T ;L2(�))
+
〈
∇(I − �

−α,0
M )u,∇V

〉

�T
,

and thus taking V = U − W implies

‖U − W‖X � ‖(I − Rh)u‖Hα/2(0,T ;L2(�)) +
∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥
L2(0,T ;Ḣ1(�))

.
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Now using the triangle inequality and the stability result (85) gives

‖u −U‖Hα/2(0,T ;L2(�)) � ‖u − W‖Hα/2(0,T ;L2(�)) + ‖U − W‖Hα/2(0,T ;L2(�))

�
∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥
Hα/2(0,T ;L2(�))

+
∥
∥
∥(I − Rh)�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;L2(�))

+ ‖U − W‖X
�
∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥X

+
∥
∥
∥(I − Rh)�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;L2(�))

+ ‖(I − Rh)u‖Hα/2(0,T ;L2(�)) .

This establishes (72). Since (73) can be proved similarly, we conclude the poof. ��

4.2 Proofs of Theorems 4.1 and 4.2

As the proof of Theorem 4.2 is parallel to that of Theorem 4.1, we only consider the latter.

Proof of Theorem 4.1 According to Theorem 3.1, we have

‖(I − Rh)u‖L2(0,T ;Ḣ1(�)) �

⎧
⎪⎨

⎪⎩

1√
ε
hmin{1,γ+1}−ε ‖u0‖Ḣγ (�) , α = 1/2,

hmin{1,γ0+γ−1} ‖u0‖Ḣγ (�) , α �= 1/2,

‖(I − Rh)u‖Hα/2(0,T ;L2(�)) � hmin{2,γ0+γ−1} ‖u0‖Ḣγ (�) .

For α = 1/2, we choose ε = 1/(2 + |ln h|) to get

‖(I − Rh)u‖L2(0,T ;Ḣ1(�)) �
√|ln h| hmin{1,γ+1} ‖u0‖Ḣγ (�) .

Besides, there holds that

∥
∥
∥(I − Rh)�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;L2(�))

� hmin{2,γ0+γ−1}
∥
∥
∥�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;Ḣγ0+γ−1(�))

.

Thanks to Theorem 3.1 and (60), we obtain

∥
∥
∥(I − Rh)�

−α,0
M u

∥
∥
∥
Hα/2(0,T ;L2(�))

� hmin{2,γ0+γ−1} ‖u0‖Ḣγ (�) .

Invoking (61),Proposition 3.1,Lemma 4.1, and Remark 4.3 gives the estimate

∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥
L2(0,T ;Ḣ1(�))

� M−1−α(γ−1) ‖u0‖Ḣγ (�) ,

and similarly, by Lemma 4.2 we conclude that

∥
∥
∥(I − �

−α,0
M )u

∥
∥
∥X

� M−1−αmin{1,γ−1} ‖u0‖Ḣγ (�) .

Combining these estimates with Lemma 4.4 leads to (51) and (50). This completes the proof
of Theorem 4.1. ��
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Fig. 3 Temporal errors of Example 1 with h = 2−10

5 Numerical Tests

This section presents several numerical experiments to validate our theoretical predictions.
For simplicity, we take T = 1, � = (0, 1) or (0, 1)2. As spatial discretization errors have
been investigated in [27], we are concerned with the temporal convergence behaviors of

E1 := ‖û −U‖L2(0,T ;Ḣ1(�)) and E2 := ‖û −U‖Hα/2(0,T ;L2(�)) ,

where û is the reference solution.

5.1 One-Dimensional Tests

We first consider three experiments in one spatial dimension: � = (0, 1). The reference
solution û corresponds to M = 200 and h = 2−10.

Example 1 This example is to verify Remark 4.1 with a priorly known solution

u(x, t) = tσ sin πx, (x, t) ∈ �T ,

where σ > (α − 1)/2. Temporal discretization errors are plotted in Fig. 3, which shows
E1 = O(M−1−2σ ) and E2 = O(Mα−1−2σ ). This agrees well with the rates given in (54).

Example 2 To verify Theorem 4.1, we consider f = 0 and

u0(x) = θx(1 − x)γ−1/2 + (1 − θ) sin πx, x ∈ �,

where 1 − γ0 < γ ≤ 1.5 and θ ∈ {0, 1}. For θ = 1, a direct calculation yields that
u0 ∈ Ḣγ−ε(�); and for θ = 0, we have u0 ∈ Ḣβ(�) with any β > 0, since sin πx is an
eigenfunction of −� on � = (0, 1) with the homogeneous Dirichlet boundary condition.
Numerical outputs are plotted in Fig. 4, which implies that E1 = O(M−1−αmin{2,γ−1}) and
E2 = O(M−1−αmin{1,γ−1}). These coincide with the sharp estimates established in Theorem
4.1.

123



14 Page 22 of 30 Journal of Scientific Computing (2022) 91 :14

Fig. 4 Temporal errors of Example 2 with h = 2−10

Example 3 This example is to verify Theorem 4.2 with u0 = 0 and f (x, t) = tσ v(x), where
σ > (α − 1)/2 and

v(x) = θxγ−1/2(1 − x) + (1 − θ) sin πx, x ∈ �,

with −0.5 < γ ≤ 1.5 and θ ∈ {0, 1}.
We first consider α + σ /∈ N and θ = 1. Note that v ∈ Ḣγ−ε(�) and from Fig. 5 we

conclude that

E1 = O
(
M−1−2σ−αmin{2,γ+1}) and E2 = O

(
M−1−2σ−αmin{1,γ+1}) . (75)

Then we take α+σ ∈ N and θ = 0. In this situation, we have v ∈ Ḣβ(�)with any β > 0
and according to Fig. 6, we observe faster convergence rates

E1 = O(M−1−2σ−4α) and E2 = O(M−1−2σ−3α). (76)

Both this and the previous case are conformable to the sharp error bounds in Theorem 4.2.

5.2 Two-Dimensional Tests

We provide two more examples in two spatial dimensions: � = (0, 1)2. The reference
solution û corresponds to M = 120 and h = 2−5.

For θ ∈ {1, 2, 3} and any x = (x1, x2) ∈ �, define

v(x) :=

⎧
⎪⎨

⎪⎩

δz(x) if θ = 1,

χ{0<x1<1/2}(x) if θ = 2,

sin(πx1) sin(πx2) if θ = 3,

(77)

where δz denotes theDirac distribution centered at z = (1/2, 1/2) ∈ � andχω is the indicator
function of the region ω, i.e., χ(x) = 1 for x ∈ ω and χ(x) = 0 for x /∈ ω. It is not hard to
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Fig. 5 Temporal errors of Example 3 with θ = 1 and h = 2−10

Fig. 6 Temporal errors of Example 3 with θ = 0 and h = 2−10

find that v ∈ Ḣγ (θ)−ε(�), where

γ (θ) :=

⎧
⎪⎨

⎪⎩

− 1 if θ = 1,

1/2 if θ = 2,

γ ∈ (3,∞) if θ = 3.

(78)

Example 4 In this test, we take f = 0 and u0 = v with v being defined in (77). From Fig. 7,
we see that E1 = O(M−1−αmin{2,γ (θ)−1}) and E2 = O(M−1−αmin{1,γ (θ)−1}) for θ ∈ {2, 3},
where γ (θ) is defined by (78). This verifies the estimates in Theorem 4.1.

Example 5 To the end, we consider u0 = 0 and f (x, t) = tσ v(x) where σ > (α − 1)/2 and
v is defined in (77). In Fig. 8, we report the numerical results in (75) for α + σ /∈ N and
observe the same rates, with γ being γ (θ) (cf. (78)). The case θ = 3, α + σ ∈ N has also
been displayed in Fig. 9, which yields the same faster rates as in (76). These agree well with
the theoretical predictions in Theorem 4.2.
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Fig. 7 Temporal errors of Example 4 with h = 2−5

Fig. 8 Temporal errors of Example 5 with h = 2−5

6 Conclusion

This paper is devoted to sharp error estimates of a time-spectral algorithm for time fractional
diffusion problems of order α (0 < α < 1). Based on new regularity results in the Besov
space, optimal convergence rates have been derived with low regularity data. Particularly,
for the homogenuous case f = 0, optimal temporal convergence orders 1 + 2α and 1 + α

under L2(0, T ; Ḣ1(�))-norm and Hα/2(0, T ; L2(�))-norm have been shown theoretically
and numerically.
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Fig. 9 Temporal errors of Example 5 with θ = 3 and h = 2−5
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A The Shifted Jacobi Polynomial

Given a, b > −1, the family of shifted Jacobi polynomial {Sa,b
k }∞k=0 on (0, T ) are defined as

follows:

μa,b(t)Sa,b
k (t) = (−1)k

T kk!
dk

dtk
μk+a,k+b(t), 0 < t < T , (79)

where μν,θ (t) = (T − t)ν tθ for all −1 < ν, θ < ∞. Note that (79) is also called Rodrigues’
formula [56], which implies {Sa,b

k }∞k=0 is orthogonal with respect to theweightμ
a,b on (0, T ),

i.e.,
〈
Sa,b
k , Sa,b

l

〉

μa,b
= ξ

a,b
k δkl ,

where δkl denotes the Kronecker product and

ξ
a,b
k := T a+b+1�(k + a + 1)�(k + b + 1)

(2k + a + b + 1)k!�(k + a + b + 1)
. (80)

As {Sa,b
k }∞k=0 forms a complete orthogonal basis of L2

μa,b (0, T ), any v ∈ L2
μa,b (0, T )

admits a unique decomposition

v =
∞∑

k=0

vk S
a,b
k with vk = 1

ξ
a,b
k

〈
v, Sa,b

k

〉

μa,b
, (81)
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and the L2
μa,b -orthogonal projection of v onto PM (0, T ) is defined as�

a,b
M v := ∑M

k=0 vk S
a,b
k .

For ease of notation,we shall set Sak = Sa,a
k , μa = μa,a, �a

M = �
a,a
M , and all the superscripts

are omitted when a = 0.
Thanks to [7, Lemma 2.5], a standard calculation gives

Dθ
0+ Sβ−θ,0

k = �(k + 1)

�(k + 1 − θ)
t−θ Sβ,−θ

k (t), (82)

Dθ
T− S0,β−θ

k = �(k + 1)

�(k + 1 − θ)
(T − t)−θ S−θ,β

k (t), (83)

where 0 < θ < 1 and −1 < β < ∞.

Lemma A.1 For any v ∈ Hα/2(0, T ), it holds that
〈
Dα
0+(I − �

−α,0
M )v, q

〉

Hα/2(0,T )
= 0 ∀ q ∈ PM (0, T ). (84)

Consequently, we have the stability:
∣
∣
∣�

−α,0
M v

∣
∣
∣
Hα/2(0,T )

≤ Cα |v|Hα/2(0,T ) , (85)

and the convergence: lim
M→∞ |(I − �

−α,0
M )v|Hα/2(0,T ) = 0.

Proof Given any fixed v ∈ Hα/2(0, T ), by [17, Theorem 1.4.4.3], we know that v ∈
L2

μ−α,0(0, T ). To prove (84), it is enough to consider q = S0,−α
k for any 0 ≤ k ≤ M .

Thanks to (83), we have

Dα
T− q = �(k + 1)

�(k + 1 − α)
(T − t)−αS−α,0

k .

Again, it follows from [17, Theorem 1.4.4.3] that Dα
T− q ∈ (Hα/2(0, T ))∗. Thus using the

definition of �
−α,0
M and Lemma 2.1 gives

〈
Dα
0+(I − �

−α,0
M )v, q

〉

Hα/2(0,T )
=
〈
(I − �

−α,0
M )v,Dα

T− q
〉

(Hα/2(0,T ),(Hα/2(0,T ))∗)

= �(k + 1)

�(k + 1 − α)

〈
(I − �

−α,0
M )v, (T − t)−αS−α,0

k

〉

(0,T )

= 0.

This establishes (84) and by Lemma 2.1, we have

cos(απ/2)
∣
∣
∣�

−α,0
M v

∣
∣
∣
2

Hα/2(0,T )
=
〈
Dα
0+ �

−α,0
M v,�

−α,0
M v

〉

Hα/2(0,T )

=
〈
Dα
0+ v,�

−α,0
M v

〉

Hα/2(0,T )

≤
∣
∣
∣�

−α,0
M v

∣
∣
∣
Hα/2(0,T )

|v|Hα/2(0,T ) ,

which implies (85).
By (84) and the proof of (85), we find that

|(I − �
−α,0
M )v|Hα/2(0,T ) ≤ sec(απ/2)|v − q|Hα/2(0,T ) ∀ q ∈ PM (0, T ).
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Therefore, a standard density argument leads to

lim
M→∞ |(I − �

−α,0
M )v|Hα/2(0,T ) = 0.

This finishes the proof of this lemma. ��

B Proof of the Commutativity (57)

Let {xi }i∈N and {y j } j∈N be the orthonormal basis of X and Y , respectively. Assume Axi =
∑∞

j=0 ai j y j with ai j ∈ R for all i ∈ N. It is clear that

∞∑

j=0

∣
∣ai j

∣
∣2 = ‖Axi‖2Y ≤ ‖A‖2X→Y ‖xi‖2X for all i ∈ N, (86)

where ‖A‖X→Y denotes the operator norm of A.

We claim first that by definition, �
a,b
M,Zvn

n→∞→ �
a,b
M,Zv in L2

μa,b (0, T ; Z) whenever

vn
n→∞→ v in L2

μa,b (0, T ; Z) for Z = X or Y . Besides, we have the identity

‖w‖2
L2

μa,b (0,T ;Z)
=

∞∑

i=0

‖wi‖2L2
μa,b (0,T )

=
∫ T

0

∞∑

i=0

|wi (t)|2 μa,b(t) dt

=
∫ T

0
‖w(t)‖2Z μa,b(t) dt,

for all w = ∑∞
i=0 wi zi ∈ L2

μa,b (0, T ; Z), where zi = xi or yi and we used the monotone
convergence theorem (see [6, Theorem 4.1, pp.90]). Based on this, let us verify Avn → Av

in L2
μa,b (0, T ; Y ) provided that vn

n→∞→ v in L2
μa,b (0, T ; X). Indeed,

‖Avn − Av‖2
L2

μa,b (0,T ;Y )
=
∫ T

0
‖(Avn − Av)(t)‖2Y μa,b(t) dt

≤ ‖A‖2X→Y

∫ T

0
‖(vn − v)(t)‖2X μa,b(t) dt

= ‖A‖2X→Y ‖v − vn‖2L2
μa,b (0,T ;X)

.

Now, we take vn = ∑n
i=0 vi xi , which converges to v in L2

μa,b (0, T ; X). According

to the above discussions, �
a,b
M,Xvn

n→∞→ �
a,b
M,Xv in L2

μa,b (0, T ; X) and Avn
n→∞→ Av in

L2
μa,b (0, T ; Y ). To prove (57), it is sufficient to establish

A�
a,b
M,Xvn = �

a,b
M,Y Avn . (87)

Consider ξmi = ∑m
j=0 ai j y j , which converges to Axi by (86) and further implies that

n∑

i=0

ξmi �
a,b
M vi

m→∞→
n∑

i=0

Axi�
a,b
M vi = A�

a,b
M,Xvn in L2

μa,b (0, T ; Y ). (88)
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On the other hand, we find

n∑

i=0

ξmi �
a,b
M vi =

m∑

j=0

(
n∑

i=0

ai j�
a,b
M vi

)

y j = �
a,b
M,Y

m∑

j=0

(
n∑

i=0

ai jvi

)

y j = �
a,b
M,Y

n∑

i=0

viξ
m
i .

Since
n∑

i=0

viξ
m
i

m→∞→
n∑

i=0

vi Axi = Avn in L2
μa,b (0, T ; Y ),

we conclude that
n∑

i=0

ξmi �
a,b
M vi

m→∞→ �
a,b
M,Y Avn in L2

μa,b (0, T ; Y ).

This together with (88) proves (87) and completes the proof.
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