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Abstract

This paper is devoted to the error analysis of a time-spectral algorithm for fractional diffusion
problems of order @ (0 < @ < 1). The solution regularity in the Sobolev space is revisited
and new regularity results in the Besov space are established. A time-spectral algorithm is
developed which adopts a standard spectral method and a conforming linear finite element
method for temporal and spatial discretizations, respectively. Optimal error estimates are
derived with nonsmooth data. Particularly, a sharp temporal convergence rate 1 + 2« is
shown theoretically and numerically.

Keywords Fractional diffusion problem - Finite element method - Spectral method - Jacobi
polynomial - Low regularity - Besov space - Optimal error estimate

1 Introduction

Let T > O be a finite time. This paper considers the following time fractional diffusion
equation:

Dy, (u —up) —Au=f inQx(0,7),
u=~0 ondQ2 x (0,7), (1)
u(0) = ug in ,

where ug, f are known data, Q2 C R4 (d =1,2,3)is a convex polygonal domain and D‘(’)‘ fl

is a Riemann-Liouville fractional differential operator with order « € (0, 1); see Sect. 2.
The problem (1) is widely used in modeling of anomalous diffusion process [45,46] and

anomalous transport [38,65], for its capability of accurately describing models with non-
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locality and historical memory [23,52]. For theoretical study to the problem, e.g. the weak
solution and its regularity, we refer to [16,33,35,54].

Many numerical methods have been developed in the past a dozen years. Among existing
works, three types of temporal discretization are most prevailing, i.e., the finite difference
method (L-type schemes [2,24,36,41] and convolution quadrature methods [12,14,62,64]),
the finite element method [25,27,29,30] and the spectral method [26,35,55,66]. Under certain
circumstances, problem (1) has an equivalent form

uy —DY*Au=g inQx(0,1),
u=0 on 92 x (0, 7), 2)
u(0) = ug in 2,

where g = D(l):)‘ f. In the literature, both (1) and (2) are called time fractional diffusion
equations or time fractional subdiffusion equations. For the solution regularity and numerical
analysis of problem (2), especially in the case of nonsmooth data, we refer the reader to
[28,42,43,48,50,51].

It is well-known that the solution to problem (1) generally has boundary singularity (near
0+) in temporal direction. If f = 0 and ug is (or not) smooth, or uyp = 0 and f is smooth,
then one can obtain growth estimates of the solution [19,20] or even find out the leading
singular term ¢* of the solution [33]. Due to the singularity, the accuracy 2 — « of the L1
scheme [36] deteriorates into 1 in the case of f = 0 and ug # 0, whether the initial data
uo is smooth or not [21]. In the same situation, a piecewise constant discontinuous Galerkin
(DG) semidiscretization was analyzed in [44]. Let us summarize the error estimate results of
[21,44] as follows: for any temporal grid node t; = jr with j =1,2,...,Jandt =T/J,

t(}t

12 Juoll gy . for L1 in [22]

l@w-0)p] e =Cy 7, . . 3)
1T ||u0||L2(Q) , for L1 in [22] and DG in [45].

Hence, if ug € L%(), then the first order accuracy under L*°(0, T; L2(2))-norm is
only achieved far away from the origin, and the global convergence rate degenerates as
tj approaches to zero; and if ug € H?(Q), then the global rate reduces to 7. These error
estimates in (3) coincide with the solution regularity in Sobolev space (see Theorem 3.1):

2 |u|H|/2*€(O,T;L2(Q)) <Car ||u0||L2(Q) ) 0<e=x<1/2,

Y, 2y — V2 ”u”H(I'HXV)/Z([)’T;LZ(Q)) <Cur.2 ”u()”HV(Q) , O0<y <2

To improve the temporal accuracy, graded meshes were used in [24,49,58] and some
correction techniques were proposed in [13,22,31,63]. However, most of the existing works
using graded meshes require some assumption of growth estimate on the true solution, and
the analysis of correction schemes for (3) are mainly based on the Laplace transform, which
is only applicable for uniform temporal grids, and the obtained convergence rates have the
form t;qtf’ with 0 < g < p (like (3)), which deteriorates near the origin. In [32], several
technical stability results were developed to establish the optimal first order accuracy of a
piecewise constant DG method on graded meshes. Also, spectral methods with singular basis
functions were presented [7,55] but so far no rigorous convergence analysis is available with
low regularity data. In [9], a multi-domain Petrov—Galerkin spectral method with a singular
basis and geometrically graded meshes was proposed, and the exponential decay was verified
numerically with nonsmooth initial data. We are also aware of the recent work [8], where an
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exponentially convergent rational approximation scheme has been proposed for the spatial
semi-discretization of (1).

In the 1980s, Gui and Babuska [18] established the optimal approximation order 1 4 28
under the L2-norm of the Legendre orthogonal expansion for the singular function (x + 1)#
on (—1, 1). Later Babuska and Suri [4] extended this to a p-version finite element method
for solving two dimensional elliptic equations, and proved the sharp rate 28 under the energy
norm, by assuming that the solution has the explicit singular expression r# around the origin.
Note that these functions have boundary singularities as well but the achieved convergence
rates agree with their regularity in the Besov space.

In view of the boundary singularity of the solution to problem (1), one may wonder
whether this happens to the convergence behavior of a time-spectral method. For simplicity,
let us start with a fractional ordinary differential equation

Do (y =yo) +Ay =0 in (0,T], “

where yp € R and A > 0. Invoking the Laplace transform gives the solution expression

Are k
»(0) = on F(( k’+)1) 0<i<T. 5)

Note that for a given fixed (small) A > 0, we have y € H1/Z =<, T) for any € > 0
(see Remark 3.1). We adopt a standard Legendre spectral method with polynomial degree
M € N to seek an approximation Y, and use Yjqg as a reference solution. Figure 1 plots the
convergence order 1 + 2« under L?-norm in the case that A = yg = T = 1. This agrees with
the Besov regularity of (5): IB%I_JEZ(‘;‘ €(0, T) for any € > 0; see Lemma 3.4. However, if A is
extremely large or goes to infinity, then we see from Lemma 4.1 that the convergence rate will
be ruined (we also refer the reader to [9, Section 1.2] for detailed numerical investigations

in this case).
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Fig. 1 Discretization errors of (4) with A = yg = T = 1. The predicted accuracy is M —1-2a
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As for the model problem (1) itself, although there exists a space-time spectral method
that has been proposed in [35], to our best knowledge, no such rate 1 42« has been mentioned
numerically and established rigorously. It is nontrivial to obtain this since now the impact
of large A comes from the negative Laplacian operator —A (or its discrete version —Ayp).
This motivates us to revisit the convergence analysis of the time-spectral method for time
fractional diffusion problem (1). Can we prove the optimal approximation order in terms
of Besov regularity with nonsmooth data? Especially, whether the accuracy 1 4 2« can be
established or improved?

In this work, we give partially positive answers to these questions mentioned above.
Optimal error estimates with respect to the solution regularity in Besov space are established
with low regularity data. Moreover, temporal convergence rates 1 4+ « and 1 + 2« under
HY2(0, T; L*(2))-norm and L2(0, T; H' (€2))-norm are derived, respectively, which are
sharp and cannot be improved even for smoother data.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations,
including standard conventions, functional spaces and fractional calculus operators. Then in
Sect. 3, we define the weak solution and establish its regularity results in Sobolev space and
Besov space, and we present our main error estimates in Sect. 4. Finally, we conduct several
numerical experiments in Sect. 5 and give some concluding remarks in Sect. 6.

2 Preliminary

For ease of notation, we make some standard conventions. For a Lebesgue measurable subset
wof R' (I = 1,2,3), we use H (0) (y € R) and H} (») (y > 0) to denote two standard
Sobolev spaces [59]. Given 1 < p < oo, if wis an interval and p is a nonnegative measurable
function on w, then Lﬁ(a)) denotes the weighted L”-space, and the symbol (a, b), means
fw abp whenever ab € Llll(w); if w is a Lebesgue measurable set of R! (1=1,2,3,4), then
(a, b),, stands for [ ab whenever ab € L'(w); if X is a Banach space, then (-, -)y means
the duality pairing between X* (the dual space of X) and X. In particular, if X is a Hilbert
space, then (-, -) x means its inner product. If X and ¥ are two Banach spaces, then [X, Y]s 2
is the interpolation space constructed by the well-known K -method [5]. For k € N and any
d-polytope @ C RY(d = 1,2, 3), Pr(w) denotes the set of all polynomials defined on w
with degree no more than k.
As we all know, LZ(SZ) has an orthonormal basis {¢, 30:0 such that [11]

— A¢p = Ay @y, in Q,
¢n =0, on 092,

2
LX)

oo

where {1, }°°  is a nondecreasing real positive sequence and Ag = || V| > ( depends

only on Q. For any y € R, define

o o0
HY(Q) := {ch(bn : Zk%cz < oo}
n=0 n=0

and equip this space with the inner product

00 00 00 00 00
(Z Cnns Zdn¢n> = Z)»chdn, for all chd’nv Zdnd)n € H'(Q).
n=0 HY (Q) n=0 n=0

n=0 n=0
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The induced norm is denoted by ||-||m(Q) = /(, -),;,V(Q). Note that HY (€2) is a Hilbert

space and has an orthonormal basis {A, v/ 2(;3,, Pl
LetoH*(0,T) := {v e H*(0, T) : v(0) = v'(0) = 0} and equip this space with the norm
vl 207y = | UNHLZ(O 7)- Givenany 0 < y < 2, we introduce the space

0H” (0, T) :=[L*(0, T), 0H*(0, T)ly2,-
Applying the interpolation theorem of bounded linear operators [39, Theorem 1.6] yields

Illiz20.7). 220,701, 00 < WWllgmr 0.1y YV €0HY(0,T). (6)

In addition, if 0 < y < 1/2, then by [37, Chapter 1], the relation oH? (0, T) = HY (0, T)
holds in the sense of equivalent norms, and in this case (i.e., 0 < y < 1/2) we have an
alternative norm, which is defined by

12
lwlpyo,1) = (fR €% | Fwxo.m) @) dé) Yw e H”(0,T),

where F : L2(R) — L%(R) is the Fourier transform and X(0,7) denotes the indicator function
of (0, 7).

Let X be a separable Hilbert space with an inner product (-, -)x and an orthonormal basis
{e, : n € N}. For any y € R, let H” (0, T; X) be a usual vector-valued Sobolev space
defined by (cf. [37, Section 1.3])

oo o
HY(0,T; X) := {Zvnen: D Mvaliron < oo}, @)

n=0 n=0

with the norm

00 12
vl g7 0.7:%) = (Z I, e,,)xn%,y(o,n) Vve HY(0,T: X).
n=0

The spaces Lia'h (0, T; X)and gH” (0, T; X) for 0 < y < 2 can be defined similarly as (7).

Fora,b > —1, let {S“’b},i’io be the family of shifted Jacobi polynomials on (0, 7') with
respect to the weight u®?(t) = (T — 1)%1?; see “Appendix A”. Given y > 0, we introduce
the Besov space (also known as the weighted Sobolev space, cf. [3]) defined by

oo oo
B! ,(0,T) = {Z ueSEl s Y (kg R < oo} , )
k=0 k=0

where Slf s given by (80), and endow this space with the norm

o 12 S
vl o.7) = <Z(1 + kzy)s,g"bv§> Vo= usi’ eBl,0.7).
' k=0 k=0

In addition, for any separable Hilbert space X, the vector-valued space ]BZ’ 50, T; X) can be
defined in a similar way as that of (7).

To the end, let us introduce the Riemann—Liouville fractional calculus operators and list
some important lemmas. For any y > 0 and v € L'(0, T; X), define the fractional integrals
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of order y as follows:

. 1o
(D2 v) ::m/ (t — ) o(s)ds, te€(0,T),

(D;Z v) )= —— o) f (s =) lu(s)ds, re(0,7),

where I'(-) denotes the Gamma function I'(z) := fo t*le=tdrforz > 0. Fork — 1 <
y < k with positive integer k € N, define the left-sided and right-sided Riemann—Liouville
fractional derivative operators of order y respectively by

k —k
L :=D'D}", Dy_:= (D)D),

Y
Dy
where D is the first-order generalized derivative operator.
Lemma2.1 [10] If—1/2 <y < 1/2and v, w € H™™OY}(Q, T), then
2
(Dg+ v, D’;_ v>(0 = cos(ym) vlgvo.7) -

cos(ym) || D} <(Dy, v.Df_v < sec(ym) | D}

0+ Y ||L2(0 T) = >(o Ty = 0+ U||L2(o Ty
2y _ Y
<DO+ w)HV(O,T) = Do, v. D w)(O ry = Wlaror Wlaror -
Lemma 2.2 [40] Ifv e oHY(0,T) withQ < y < 2, then
y ¥
C1 |Dg. v||L2(0,T) < lllymr o) < C2 |Dg, UHLZ(O,T)’

where C1 and Co depend only on y.

3 Weak Solution and Regularity

This section is to revisit the solution regularity of problem (1) in terms of proper Sobolev
spaces and establish new regularity results in Besov spaces.
Following [27,35], we first introduce the weak solution to problem (1). To do so, set

X = HY*0,T; L*(Q) N L*0, T; H(Q)), )

and endow this space with the norm

1/2
||||X = <| |Ha/2(0 T: Lz(Q)) + || ||L2(0 T HI(Q))> N

Assuming that f + Dg, up € ™, we call u € X’ a weak solution to problem (1) if

(DB V) yar 0,72 120 F (ViU VO 20,1212 = (f +Diy 0. v}, Yve . (10)

As mentioned in [27, Remark 2.2], the well-posedness of the weak formulation (10)
follows from the Lax-Milgram theorem and Lemma 2.1. More precisely, if f+Dg, up € X™,
then problem (1) admits a unique weak solution in the sense of (10) such that

lullx < Ca | f 4+ DGy uol| s -

In the sequel, set yp := min{2, 1/«}. To establish more elaborate regularity estimates, we
apply the Galerkin method that reduces (10) to a family of ordinary differential equations,
to which the solutions can be used to recover the weak solution to (10) through a series
expression; see the lemma below.
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Proposition 3.1 Assume f € L2(0, T: HY(Q)) and ug € HY (Q) where y > 1—y. The
solution to (10) is given by u = ZZO:O Vnbn, where y, € H*2(0, T) satisfies

(DG4 (v = ¥1,0) + Z)gern o7y + 2n Vs 20,1y = (fas 0.7 (1D
forall z € H*'*(0, T), where yn.0 = (40, $n) fjr @) @d fo = (f» bn) 10

Proof The proof here is actually in line with that of [27, Theorem 3.1], where the case
0 < @ < 1/2 has been considered. The case of 1/2 < o < 1 follows similarly. O

3.1 Regularity in Sobolev Space

We now revisit the Sobolev regularity of the solution to (10). Thanks to Proposition 3.1, this
can be done by investigating problem (11), which, in a general form, is equivalent to

Dg,(y —yo) + Ay = g, (12)

where & > 0, yo € Rand g € L2(0, T). Indeed, in [27, Lemmas 3.1-3.3] we have estab-
lished corresponding regularity results via variational approach, and Sobolev regularities of
the weak solution have been given in [27, Theorems 3.1-3.3].

For the case ug = 0, if f € LZ(O, T; HV(Q)) with —1 <y <1, then

||“||01-1a(1+y/2)((),T;L2(Q)) + ”u”LZ(()!T;HZ-H/(Q)) <Car ||f||L2(07T;[:]V(Q)) ) (13)

and based on the proof of [27, Theorem 3.3, if f € oHP (0, T; H (Q)) with —1 <y < 1
and 0 < B8 < 1, then we have

||u||0Ha+/5(o T:L2(Q)) + llull oHPO,T: H>v (Q)) = < Cq, B.T ”f”OHﬂ(O’T;[-']V(Q)) . (14)

However, the implicit constant in [27, Lemma 3.2] blows up as the corresponding param-
eter 0 goes to 1/a — 1 and the estimate in [27, Theorem 3.1] for the homogeneous case
f = 0is not optimal. Therefore, in this section, we provide some improved results by using
the Mittag-Leffler function [47]

(XU ) R. l
(2): ZZ:OF(ak—i—) zeC, ve (15)

Given any ¢ > 0, it is well-known that (cf. [23])

Co,v
Eyv(—1)| < 16
| Ea.u( )|_1+t (16)
In addition, applying Laplace transform gives the solution to (12) with g = 0:

y() = yoEa,1 (=A%), 0=<1=T. (17)

Lemma 3.1 Assume X > A, > O, then the function y(t) defined by (17) satisfies

NN Nyl oo, 7y + 2772 1yl e oy

@2 Nyl 20,7y < Caer [0l (18)
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where
{r;(e):l, € =0, ifo #1/2, (19)
nie) = e, €e€(0,1/2], ifa=1)2.
Moreover, we have
2 ylgir-cor) < Car lyol. 0<e=<1/2, (20)
V2 = V2 Iyl gasanzory < Cand?? Iyl 0 <y <2. @1

Proof We first prove (18). Since the case 0 < o < 1/2 has been given by [27, Lemma 3.1],
we only consider the case 1/2 < a < 1, which says that

1 _ . _ b
NEOA Iyl gao.ry + A2 Iyl e,y + 1EOA Yl 20,7y < Caspn, A2 |30l -
(22)
By (16) and direct calculations, we have

2
(@) 2722 (Dg (v = 30) W + 27| (DG ») 0]+ In@ P2 [y

) |7](E)|2)\._2E _'_)\'—lt—()é
(1 4 At>)2?
forall 0 < ¢t < T. It is evident that

(23)

’

< Cq lyol

1
T —l,—a [ee) —1,—a AT 00
/ U)L—I-#)Zdt < / (1)\4_7;\,@1)2‘” < / Al dt+/ AT dr

0 0 0 AT @

= Cyr" Ve, (24)
Ifa =1/2, then for 0 < € < 1/2 it holds

/T )\_726 dr = )\,é ! wthxefl dr < )\‘75 fT I2a€71 dr = M)\‘fl/a-
o (14?2 o (14 ir%)? N 0 € '

and if 1/2 < @ < 1, then using a similar manner for estimating (24) gives

g 1
/ —————dr < Cer Ve,
o (L+ae2 =

Hence, by Lemma 2.2, plugging the above estimates into (23) implies

1= _ _ _1
nOA Ny = yoll,ge.ry + 2~ 2 IVl e,y + 1EOA Iyl 207y < Ca7A ™2 |y0l

which, together with the fact (6) and the assumption A > A, > 0, yields (22) immediately.
If 0 < € < 1/2, then using Lemma 2.1 and 16 gives

2 _ Ca |y0|2 /\T t2€71 dt
L2071~ €2 o (14 Ar®)?2

C 2 T C T 2
< a |;’0| / [25_1 dr = =& 3|yO|
€ 0 €

2
|y|H1/2—e(0yT)

1/2—€
0+

< csc? e HD

)

which proves (20).
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To the end, we consider (21). Since 0 < y < 2, wehave 1/2 < (1 +ay)/2 <o+ 1/2.
By (16), Lemma 2.2 and straightforward calculations, we get

T 2
1 2
”y - yOH(Q)‘H(lJro(y)/Z(O’T) = CO{ / ‘(D(()_:_ay)/ (y - yO)) (I)‘ dt

T 52,02-y)-1
< Ca lyol / ar,

1+ )\to‘)2
and we estimate the integral in a similar way for (24) to obtain
Cot)\y/z [yol
ly — )’OHOH(HHV)/Z((),T) < X .
V2y —y?
Therefore, from (6) and the assumption A > A, > 0 it follows (21). O

Remark 3.1 For any fixed A > 0, from Lemma 3.1 we see that the highest regularity of y =
y0Eq.1(—At%) is no more than H'/2+%(0, T). Although we can establish higher regularity

(cf. [34]) for the smooth part Y = y — yoS,, where
A%
St)=1— —, 0<r<T,
Ma+1)

the final regularity for y = Y + yo S, is dominated by S, , which belongs to H 1/24a=€, T)
due to the singular term 7%.

Combining Proposition 3.1 and Lemma 3.1 gives the following conclusion.
Theorem 3.1 If f = 0 and uy € HY (Q) with y > 1 — y, then
0(E) el oo, 1072 gy + 10l ez o0y + 1) el 20,7 v v—<
= Co,1.2 ol gv () »
where €, 1n(€) are defined by (19). Moreover,

32 |’4|1-11/2—e(0 T:L2(Q) = <Cqr ||u0||L2(Q), 0<e<1/2,
v 2y —y? lull gavenrno,r:2(0) < CeT.Q “uO”HV(Q) , 0<y<2,
v 2y — )’2 ||u||H(1+00/)/2(()’T;[-'11(Q)) <Cur,Q ||MO||[-'1V+1(Q) , O0<y <2

3.2 Regularity in Besov Space

We then consider the regularity of the solution to (10) in Besov spaces. As before, we start
from the auxiliary problem (12) and splititinto two cases: yo # 0, g = 0;andyp =0, g # 0.

To move on, let us present a useful expression of the Mittag-Leffler function (15); see [15,
Theorem 2.1].

Lemma3.2 [15] Ifv < 1 + «, then for all 0 < t < oo, it holds that

dr

1 / rsinvr — tsin(oe — V)7 F(=v)/a !
0

Ego(—1) = —
aw(=1) Ta r2 4+ 12 4 2rtcosam

Clearly, by definition (15), we have Ea,,,(O) = 1/T'(v) forany v € R\{—-1,-2,...} and
thus E, ,(—t) is bounded near + = 0+. Below, we give a refined estimate that implies the
asymptotic behavior of E,, ,, (—1). Note that this has no contraction with the boundness around
t = 0+ and what we are interested in is t — o0.
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Lemma3.3 Ifv < 1, then forall 0 <t < 00,

|Eqn(=0)] < CoT(1 — v+ 6yt~

where O < 6 < 1. Moreover, ifa — v € Z, then (25) holds with0 < 6 < 2.

Proof By Lemma 3.2, we have

U™ aovyja,—rie
Ea,v(_t) = r e Wa,v(r»t)dry
T Jo

where

.1 rsinvr — tsin(a — v)w

r,t) =

av r2 +2rtcosam + t2
In light of the estimate
1+ cosam
r2 4+ 2rtcosam + 2 > f(r + z‘)2

and the arithmetic-geometric mean inequality (cf. [57, page 4])
P < (-0 +01, 0<6<1,

we obtain that

C
[Pt 0] < - :[ < Cor? 170,

Therefore, inserting (29) into (26) gives

oo
|Ean(=0)] < Cat™ / e (1)@=l =y g
0

oo
= carf’/ e 59V ds = C,T'(1 + B — v)t 77,
0

which establishes (25). Moreover, if « — v € Z, then

rsin v
r2 4+ 2rtcosam + 12’

Qa(r,t) =

and from (27) and (28) it follows

|@an(r )| < Cor® 1170 0<0 <2,

(25)

(26)

27)

(28)

29

which maintains the estimate (25) and enlarges the range of 6. This completes the proof. O

Based on Lemma 3.3, we are able to establish the following lemma.

Lemma3.4 Assume —1 < 0 < 1 with 1 4+ 200 > 0, then the function y defined by (17)

satisfies

Ca T .0
2af—¢ < A s
”y”B:;D 0,7) = \/E [yol

forany 0 < e <1+ 2a6.

@ Springer

(30)



Journal of Scientific Computing (2022) 91:14 Page 110f30 14

Proof By (16), itisevidentthaty € L? _20(0, T) and we have the orthogonal decomposition
L
y = Z;‘;O VS, a,O’ where {S; a’o},‘(’io denotes the shifted Jacobi polynomials on (0, 7') with

respect to the weight w0) = (T — 1)~ (see “Appendix A”), and

1 B _ Tl—o(
W= St L 0= (1)

g0 2k +1l—a

According to the definition (8), it suffices to investigate the asymptotic behavior of the
coefficient yi. Let us fix k € N. By Rodrigues’ formula (79), we have

—0.0 (—1)k< d k—ak>
(v.50°0) = L (32)
ko lymeo ™ ThEL T dik o7
Using integration by parts gives
& - ; k[ (k) k—ak
—a i —a
) = S () = GO) + (<D (y©, ek
<y i >(07T) ; (¢ 5 (0)) S
where
. gk=imt kAt P
Gi(0) =y ) ( v VA )(z) =00 Y Coijur @),
Jj=0
From (17) we have the identity
YO = = ayot* Equas1-i(=2%), 0<i <k, (33)

and it follows that ¢; (0) = ¢;(T) = O for all 0 < i < k. Thus, we obtain the relation

d* k ak> k
ke —(—1 < ® k—a,k> _ 34
<y P on (=D (y", o1 (34)
Invoking (33) and Lemma 3.3 yields the inequality
YO 0] = T = 00 [yo] 217, (35)
where —1 < 6 < 1. In addition, we have a useful formula (cf. [56, Appendix, (A.6)])
r HDrop+1
‘u”’bH _ parbn D@ DLGFD = (36)
LY(0,7) T'a+b+2)
which, together with (35), indicates that
(k) k—a,k> <C Tk — 6 H k—a,00
‘(y k) = ol AT~ ) [ o .

F'k+1—-—a)'(k—06a)

= keTk .
. ol Fk+2+© - Da)

Observe Stirling’s formula [1, Eq. (6.1.38)]
T(z+1) =V2r77T120@/029=2 g - g(z) < 1, z> 0. (38)
Therefore, collecting (32),(34) and (37) gives

. Lk +1— )k — o) L
LS50 2! <C, W20 (39
‘<y g >w~0 KT+ 240 — Dy <7 0l (39)

=< COt,T |)’0|
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As aresult, forany 0 < € < 1 + 26, we have

2
Iy ”BI,Z%]Q*E 0.7)

0 l+k2+40(9—26

o0
< Co.1 |y0l* 2% (1 + Zklk) (40)

0 2

—a,

<y ’ Sk > —a,0
il

k=0 k=1

2420 o —1-2¢ CaT 2 420
< Car lyol? A 1+/ r12ear) < ST,
1

which shows (30) and finishes the proof of this lemma. ]

—a,0
&k

Remark 3.2 As mentioned in Remark 3.1, the best regularity of y(t) = yoEq 1(—At%) is
no more than H1/2+ (0, T). However, from Lemma 3.4 we know that y € IB%I_ZZ(‘;‘ €0, ),
which can not be improved due to the singular term %, and the optimal rate 1 + 2« of the
standard Legendre spectral method under Z?-norm has been validated numerically in Fig. 1.

For another case: yp = 0, g # 0, according to [23, Proposition 5.10], the solution y to (12)
can be represented as follows

1
y(@) = / (t = )" Eqa(—A( —$)*)g(s)ds, 0<1<T, (41)
0

and by the proof of [27, Lemma 3.3],if g € oHPB(0, T) with B > 0, then we have
I¥llyagers0,m) + 2 1IyI20,7) < Cap 1 l18llyHE O, T) -
In particular, for g(t) = got° with 0 > —1/2, a direct computation gives
y(#) =T (0 + Dgot** Eggios1(—21%), 0<1<T. (42)
Analogous to Lemma 3.4, we have the following regularity estimate.

Lemma3.5 Assume o > —1/2and 0 < 0 < 1, then the function y defined by (42) satisfies

Coo.T 3
”y”]El_-%(;Zg-%—Zaé)—e 0.7) < il |g0| )\49 1 , (43)

Je

forall0 < € <14 20. Moreover, if « + o € N, then we can take 0 € [0, 2].

Proof Sinceo > —1/2,againby (16), wehave y € Li_mo (0, T'), and we have the orthogonal

decomposition y = Y 77 yk S,;a’o, where y; and 5,:0"0 are defined in (31).
Ifoa+ o0 ¢ N, then

y (1) =T(o + Dgot* " ¥ Eqasotr1—i(—1t%) Vi eN. (44)
For k > o + o, invoking Lemma 3.3 yields the estimate:
‘y(k)(t)' < CuT(0 + 1) |gol 07 F T (k —g —Ba), O0<i<T,  (45)

where 0 < 6 < 1. Hence, by using Rodrigues’ formula (79) and integration by parts, a
similar argument as that for (34) gives

1
i Sfa,0> — < (k)’ k—a,k) , 46
<y kom0 = TR R o (46)
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~
B M6 R 115
N
\\ 4 N
10 N \\\ 1 10 S
o N ~ AI—Z,ﬁ - ~
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Fig. 2 Discretization errors of (12) with A = T = 1, yg = 0 and g(¢) = . The predicted accuracies are
M~1720-20 gng y—1-20—4¢ regpectively foro + o ¢ Nando + o € N

and from (36) and (45) we obtain

1 _ 4Ttk —0 —06a) _
*)  k a,k) <C 50-1 H k—a,0+0a
Tkk! <y ) 0| = Ca 8ol T+ 1) 1% L10.T)
Frk—a+1) 'k —o0 —0a)

<C At : :
< Cu.0,1 180l T+ 1) F'tk—a+o+0a+2)

This together with (38) implies that

, S—a,0>
’<y k u—e0

Note that for k < @ + o, using (16),(28) and (44) gives

< Coo1 |gol 20 k2720720, A7)

YOO = Cal o + D 1gol 2k, 0 <r <7,

where 0 < 6 < 1. Thus the estimate (47) holds true for all k € Ny and 6 € [0, 1].
On the other hand, if « + o € N, then we find that for all k € N,

SO = T(o 4+ 1)got* " Eg apos1-k(—11%), if k <a+o,
— Al (0 4+ Dgot® T Eyogior1i(—r%), ifk >a+o.

Thus, we still have the identity (46) and by Lemma 3.3, the estimate (47) holds true for all
k € Ny and 0 € [0, 2]. Hence, using the proof of (40) leads to the desired estimate (43). O

To illustrate the maximal regularity in Lemma 3.5, we adopt a standard Legendre spectral
method to solve (12) with A = T = 1, yo = 0 and g(r) = ¢°. In Fig. 2, we report
the numerical results under LZ-norm and observe the convergence rates M~ !=29=2¢ and
M~1720=4 respectively fora + o ¢ Nanda + o € N.

Finally, recall Proposition 3.1, which says u = Z;.,O:o Yn¢n With y, solving the ordinary
differential equation (11), and gathering Lemmas 3.4 and 3.5 implies the following regularity
results.
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Theorem 3.2 If f = 0 and ug € HY () withy > 1 — y, then
Co,r
”u”Bl_'gb_'éy_ﬁ)_e(O,T;Hﬂ(Q)) =< % ||u0||HV(Q) s (48)

wherey —2 < B <y+2and0 <e <1+a(y — pB).

Proof By definition, we have

o0
2 _ B 2
u g . = E A _p— .
l ”]Bl_-:utéy B¢ (0.7 F1F (<)) . n ”yn”]El_-i—Xaéy B¢ 0.1)
n=|

Since ug = 220:0 Yn.0¢n and y, = yu.0Eq.1(—Ant®), it follows from Lemma 3.4 that

o0

C C
2 o, T y 2 LaT 2
lllgrsar—m1-c o 7. sy = ¢ Zoxn [ynol” = =2 lluolly, )
: -
provided that —1 < (y — fB)/2 <land0 <€ <1+ a(y — B). O

Theorem 3.3 Assume 0 > —1/2and y > —1. Ifug = 0 and f = v withv € H" (Q),
then

Cu0.T
||M||Bl+20+a(2+yfﬂ)fs Y = =2 ||U||1-'1y(Q) ,
0.0 0,T;HF () \/E

wherey < B <24y and(0 < € < 1420. Particularly, ifa+o € N, theny—2 < g < y+2.

4 Discretization and Error Analysis

Let K, be a conventional conforming and shape regular simplical triangulation of €2 that
consists of d-simplexes, and we use 4 to denote the maximum diameter of the elements in
K. Define

Xp={vy e H'(Q) : wilx € PI(K) YK € Kp}.

In the sequel, let Q7 := Q x (0, T') and M € N. The time-spectral method for problem (1)
reads as follows: find U € Py (0, T) ® X}, such that

(Dg .U, V) VU,VV)q, =(f +Df, uo, V) (49)

neror:c2@) 14 Py (0,T)®X),

forall V. € Py(0,T) ® Xj. It is easy to see that (49) admits a unique solution U €
Py (0, T) ® X, such that

IUllx < Co || f + DGy o 1 »

where the space X and its norm ||-|| - are defined in Sect. 3.

‘We now present our main error estimates. Note that all of the following results are optimal.
Also, we emphasis that, in Theorem 4.1, the best temporal convergence orders 1 + o and
1 4+ 2« under H%/2(0, T; L*(2))-norm and L2(0, T HI(Q))—norm are sharp and cannot
be improved even for smoother initial data. As for Theorem 4.2, we restrict ourselves to a
special case f(¢,x) = t°v(x), and the obtained temporal convergence rates 1 + 20 + «
and 1 + 20 + 2« are also sharp even for smoother v. Those predictions are verified by our
numerical results in Sect. 5.
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Theorem4.1 If f = 0and ug € HY(Q) withl — yy <y <3, then
lu = Ullp20,7:m1@) S (Ehhmm“’m+y_l}+'A1_l_aﬂh4))””OHHV«D’ (50)
||14 _ U”Ha/Q(O T LZ(Q)) < (hmm {2,y0+y—1} + M*l*(xmin{l,yfl}) ”uO”HV(Q) , (51)

where €, = 1 ifa % 1/2, and €, = /|Inh| ifa = 1/2.
Theorem{.z Assume —1 <y < lando > (@« — 1)/2. If up = 0 and f(t,x) = t°v(x)
withv € HY (), then

= Ull oo riaaay S (02742 4 =1 22omeminlly ey o o0 (52)

lu = Ull20.7: 61 @) S (hmm‘V+”+M 1-20— a<y+1>) 1Vl v e - (53)

In addition, ifo +0 € Nand v € HY (Q) with —1 <y <3, then (53) still holds true and
the temporal rate in (52) shall be M~1—20 —omin{3.y+1}

Remark 4.1 By Remark 4.4 and the prpof of Theorem 4.1, if the true solution is u(x, t) =
t°¢(x) witho > (¢ — 1)/2 and ¢ € H?(Q), then we have

”M - U||L2(0,T;H1(Q)) ,S (l’l + M—I—Z(r) ||¢||H2(Q) 5
lu — Ullgero.:1200 S (h* +M*172%) o1l g2 -

Remark 4.2 Although in Theorem 4.2 we only give the rigorous error estimates for a special
singular right hand side f = #°v(x), we hope this is helpful for understanding the conver-
gence behavior for general f. Indeed, regardless of the spatial regularity, we conclude that:
(i) if f is smooth in time but not vanishing at ¢+ = 0, then the best temporal convergence rate
is 14 2¢;if f is smooth (away from the original point) and behaves like #° near t = 0+, then
the best rate is 1 + 20 + 2« ; in addition, if « +0 € N, then we have a faster rate 1 + 20 +4a.

(54

4.1 Technical Lemmas

Let Ry, : H! (2) —> X, be the well-known Ritz projection operator
(VU = Rp)v, Vo) =0 VY, € Xy, (55)
for which we have the standard estimate [53]

I — Rl 2y + 1 I = Ridvll gy S0 Tollgr Yve BV (@), 1<y <2

For a,b > —1, denote by &% : L2,,(0,T) — Py(0,T) the L2, ,-orthogonal pro-
jection onto Pys(0, T) (cf. “Appendix A”). Assume X is a separable Hilbert space with
an orthonormal basis {e,}52 o and Py ([0, T]; X) is the space of all polynomials (degree
< M) over (0, T') with coefficients in X (see [60]). Following [26, Section 4], we can extend
dDi/,Ib to the vector-valued case CD%’X : Lia,b 0,7T; X) - Py([0,T]; X) by that: for all
a0 (0, T) define QDﬁ,’Iva =y e,ﬁbﬁ,}bv,,. Clearly, the case
X = R boils down to d> R = q>

Recall that {1, Jv/2 ®n}o2 is an orthonormal basis of HY (), and by definition, we claim
that

a,b

v=1 17 vse, Withv, € L2

(Dab U—Cbab

i = i g? Yv e H (@), (56)

@ Springer



14 Page 16 of 30 Journal of Scientific Computing (2022) 91:14

for all y > 0. Suppose X and Y are two separable Hilbert spaces and A : X — Y isa
bounded linear operator. Analogous to [26, Lemma 5.6], we have the commutativity

o}y Av = ADG v Vv e L2,,(0,T; X). (57)
In particular, there holds that
—a,0 —a,0 —a,0
CIDMothth=RhCI>M°"H1(Q)U=Rh<DM‘TL2(Q)v YvedX. (58)
Moreover, by Lemma A.1, forall v € X,
¢ (1 - *0)R ,V> —0 VV e Py, T)® Xy 59
(D5t = @y R V) O, T)® Xy (59)

This can be verified directly by definition; we also refer to the discussion in [26, Remark
4.2]. For clarity, we provide the detailed proof of (57) in “Appendix B”.

When no confuse arises, we simply write CD;;"LOZ @t = q)&“’ou ,where u = "% v,

is the unique weak solution to (10) and y, € H @/2(0, T). By the stability estimate (85), we
have that

|93 ] omo resvicy S Wlen vy - 0=y <2, (60)
and moreover,
o0
w— & u =", (1 — &y )y, 1)
n=0

which means the projection error of u is related to the scalar case (I — @;40"0) Yn, Where y,
solves the ordinary differential equation (11).

In what follows, we give some nontrivial projection error bounds in terms of the solution
to (12). The decay estimates of y established in Lemmas 3.4 and 3.5 are enough to provide
optimal rate in the Li—a.o (0, T)-norm. Moreover, we shall utilize it to prove the error estimate
under the fractional norm || ge/2(g 7y

Lemma 4.1 Let y be given by (17) with A > 0 and yy € R, then

1- &)y <c 2 M2 62
[(r=o5)y i gor = Cor 0 (©2)
where —1 <6 < 1land1 + 2a6 > 0.
Proof According to the proof of Lemma 3.4,
0. |2 - 2 1—a,0 Il
[— % ’ - ~0 ¢ e
[e=o . = X P =car 3
no k=M+1 k=M+1

where y and &, %0 are defined by (31). Thanks to (39), we have

2 o
H (1 - (b&a,o)y’ o S Car lyol? 22 Z k340
0 01 k=M+1 (63)
o
S COt,T |y0|2 )\'26 f r—3—46a dr=Ca,T |y0|2 )\'ZGM—2—4G(¥.
M
This establishes (62) and finishes the proof of this lemma. ]
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Remark 4.3 1t is clear that lefa,o (0, T) < L2(0, T). Hence, we conclude from Lemma 4.1
that

g = Car ol A7M 120,

[ = @30

where —1 <6 <1land 1+ 206 > 0.
Lemma4.2 Lety be given by (17) with A > 0 and yo € R, then

[ Cor ol 27 M1 727, (64)

<
HY/2(0,T) —
where —1 <60 < land 1+ 206 > «.
Proof By (18), we see y € H®*/?(0,T) and from [17, Theorem 1.4.4.3], we know that
v e Li,a (0, T), where = %(t) = (T — t)"“t~*. Recall the coefficient y; defined by (31)
and set z := (I — CD;,IO[’O)y =Y oMt ykS,:a’O. By (82), we have

oo
. Thk+1)
DOfZZ Z wl'(k+1) ; a/zsk 2 (65)
k=M+1 Pk+1-a/2)

Here, we changed the order of the summation and the fractional derivative operator
and the identity (65) holds true in L2(0, 7). To verify this, it is enough to check that
DYy =302, yk DO‘/ ?5¢*%in L2(0, T). Indeed, this follows from Lemma 2.1 and the

fact lim |(/ — « = 0; see Lemma A.1.
M_)OOI( o,/ O yly 20,T)

On the other hand, since z € Lio,,a (0, T), we have the orthogonal expansion (see (81)):

o0
_ . 2k+1—
7= szsl?’ * with Ik = Tli <Z Sk >M0,7Dt s

and it follows from (83) that

o0
Tk +1) .
D%/ BT (g
r-<= ;)F(k—l—l—a/z)( )

Similar with (65), this holds true in L2(0, T'). Hence, from Lemma 2.1 and the orthogonality
of {S, 0’/2},{=0 with respect to the weight w2 () = (T — 1)~%/2t=%/2 we obtain

2 2
cos(an/Z)IzI?_Im/z(oyT) = <Dgfr z,Do}/ z

i yzk Dk + DT
Qk+1—a)k+1—-a)

(66)

>(O'T) k=M+1

By Rodrigues’ formula (79), we have

2%k +1—a e
yk=(—1)"7_<y,7u" “-k> ,
0,7)

Tkt+l-af) d
2k+1—a dk
— —l k , k—a .
=D =y <Z dtk“ >(OT)
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It follows from (32) and (34) that

A ®) ko

o o
, : = (-1) < ) .
<y arkt >(O,T) ©0,7)

When k > M + 1, we have z®(r) = y®(r). Therefore, applying the proof of (34) gives

dk k,k (k) kk
2ot} =Dk )
< arct >(0,T) 0.7)

Substituting the above two identities into (66) implies

k) k—ak k) kk—
cos(ar/2)|z[; = i 2t 1—a O >(0’T) b®. a>(0,T)
HY/20,T) — 1— "k _ ’ k '
Py Tl-« T (k41 — @) TT'(k + 1)
(67)
In view of (37), it follows that
O o o ol M = po) )
TFTk+1—a) — ol I'tk+24+ (B —Da)’
forall -1 < B < 1. Analogously, one has
O o0y el W Tk =y )
T"rk+ 1) — “T'Thk+2+(4 - Do)’

for arbitrary —1 <y < 1.
Consequently, plugging the above two estimates into (67) and applying Stirling’s formula
(38) yield that

o0
kI'(k — Ba 'tk — va
|Z|12qcv/2(o ry = Car lyol? APHY Z (k= o) ) k —ya)
' pr TE+2+ (B - Do) Th+2+(¢ - Do)
oo
< Cor lyoPAPT7 Y~ g3 720,
k=M+1

Let0 = (B+y)/2 € [—1, 1] be such that 1 +2«a6 > «. Then using the proof of (63) implies
the desired estimate (64) and concludes the proof of this lemma. ]

Remark 4.4 To get (64), the key is to establish (68) and (69), which are easy to obtain for the
singular function y(#) = t°. Hence, according to the proofs of Lemmas 4.1 and 4.2, it is not
hard to conclude the following estimate:

” I — —Ot 0 M@ - ;401 O)y < Ca,a,TMilizaa

ao(O T) HY/2(0,T) —

where o > (o — 1)/2. We mention that the optimal rate 1 + 2o of the Legendre projection
under L?-norm has already been proved in [18, Theorem 5]. See also some similar results
in [61, Lemma 3.3 and Theorem 3.5] for the estimate of (I — dD‘;,}O) y under the weighted
Lia.o -norm.

For the particular case: yop = 0, g(t) = got°, we can also prove optimal projection error
bounds for the solution to the auxiliary problem (12). Indeed, by the previous two estimates
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(45) and (47), we are able to establish the corresponding key results like (68) and (69). Since
the proof techniques are almost the same as that of Lemmas 4.1 and 4.2, we omit the details
and only list the main results as follows.

Lemma4.3 Let y be given by (42) with go € R, A > 0 and 0 > —1/2. Then for any
0 <6 <1, we have

J— 0 ‘ <C AO-1pg—1-20-20a 70
H( M )y Li,a_o(O-T) = Ca,0,T |gO| ( )
and ifo > (o — 1)/2, then
—a,0 0—1p37a0a—1-20—-2a6
(4= @3] gy = o g0l 477 M . (71)

Moreover, if  + o € N, then we can take 0 € [0, 2] for both (70) and (71) .

Below, we present a lemma that connects the above projection errors with our desired
estimates. Recall that the space X’ is given in (9) and X™* denotes its dual space.

Lemma4.4 If f + Dy, up € X, then

Il — U||Ha/2(0,T;L2(Q)) < H - q);[a,o)u ¥ + (I — R]1)“||H”/2(07T;L2(Q))
(72)
I—Ry)® ™0 ‘ ,
* H( WPy He/2(0.T:L2(2)
and moreover,
. _ _ —Ot 0

e = Ull 2 rsncay S 10 = Rodull + | 1 PO )

Proof By (10), forany V € Py (0, T) ® X, we have
(DG u, V)Ha/Z(o,T;m(sz)) +(Vu, VV)g, = (f + D, uo, V), ,

which, together with (49), gives the error equation

(D§, = U). V) yap o120y + (VU =U) VV)g, =0 YV € Py(0,T) ® Xp.
(74)
Hence it follows that
(DG4 U = W) V) yapo.7:1200) + (VWU = W), VV)g,
= (Dfy = W), V) papo 7120 + (V= W), Vg,

where W = dDX,[of’)?h Rpu. Applying (55) and (59) and the fact dDX,[of’)?h Ryu =Ry d>;4“’0u (cf.
(58)) yields the identity

(DU = W) V) pap o720 T (VWU = W), VV)g,
—a,0
= (D§, (4~ Rnt). V) o g 120 + <V(I o O, vv> o’
and thus taking V = U — W implies

—a,0
1U = Wil S 10 = Rullgorraz + || (0 = @30

L20,7;HY(Q)
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Now using the triangle inequality and the stability result (85) gives

lu = Ullgero, i) S 1t = Wllgero, ;2@ + 1U = Wllgerzo 11200

< |a—a4° H
S H( MU HY/2(0,T;L2(2))

+ | - R@y

+ | U - W
‘H“/Z(O,T;H(Q)) I I

< H (I — q>,;,“’°)uHX + H (I — Rh)q;’“u‘

H®/2(0,T;L%())
+ 11— Rp)ull gero,1:2(2)) -

This establishes (72). Since (73) can be proved similarly, we conclude the poof. O
4.2 Proofs of Theorems 4.1 and 4.2
As the proof of Theorem 4.2 is parallel to that of Theorem 4.1, we only consider the latter.

Proof of Theorem 4.1 According to Theorem 3.1, we have

1 .
7hm1n{l,y+1}—e ”uollHV o = 1/2
(Q) 9 )
I = Rl 20 7o ineyy S § V€ 1 1
RO gl gy gy @ # 1/2,
I = Riull garzo. .22y S ™27 "W luoll gy -

Fora = 1/2, we choose € = 1/(2 + |In i|) to get

I = Rl 207 1 cgyy S VIATE™™ 7D g g -

Besides, there holds that

” - Rh)¢;4a,0u" < hmin{Z,y0+yfl} ”(D;/[a,ouu

He2(0,T;L2(Q) ™ HY/2(0,T; H0H=1(Q)) |

Thanks to Theorem 3.1 and (60), we obtain
—a,0 in{2,y0+y—1 .

Invoking (61),Proposition 3.1,Lemma 4.1, and Remark 4.3 gives the estimate

H (I — @;;"O)u’

< p-l-e=1 .
L20.THI(@Q) ~ ||u0||HV(Q)
and similarly, by Lemma 4.2 we conclude that

[ = @3 Oul| |, < Mt g, g

Combining these estimates with Lemma 4.4 leads to (51) and (50). This completes the proof
of Theorem 4.1. ]
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Fig.3 Temporal errors of Example 1 with 7 = 210

5 Numerical Tests

This section presents several numerical experiments to validate our theoretical predictions.
For simplicity, we take T = 1, 2 = (0, 1) or (0, 1)2. As spatial discretization errors have
been investigated in [27], we are concerned with the temporal convergence behaviors of

&= ||ﬁ— U”LZ(O,T;[.'II(Q)) and & = ||ﬁ— U||Ha/2(o,T;L2(Q)) ,

where % is the reference solution.

5.1 One-Dimensional Tests

We first consider three experiments in one spatial dimension: Q2 = (0, 1). The reference
solution & corresponds to M = 200 and A = 2710,
Example 1 This example is to verify Remark 4.1 with a priorly known solution

u(x,t) =t%sinmx, (x,1) € Qr,

where 0 > (¢ — 1)/2. Temporal discretization errors are plotted in Fig. 3, which shows
& = OM ™72y and & = O(M*~'729). This agrees well with the rates given in (54).

Example 2 To verify Theorem 4.1, we consider f = 0 and
up(x) = Ox(1 —x)’ "2 + (1 = O)sinmwx, xeQ,

where 1 —y9 < ¥y < 1.5and 6 € {0, 1}. For & = 1, a direct calculation yields that
up € HY~€(Q); and for = 0, we have uy € HP () with any B8 > 0, since sinwx is an
eigenfunction of —A on € = (0, 1) with the homogeneous Dirichlet boundary condition.
Numerical outputs are plotted in Fig. 4, which implies that £, = O (M~ !~¢min{2.y=1}) and
& = o(M~1-omin{l.y—1}y Thege coincide with the sharp estimates established in Theorem
4.1.
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Fig.4 Temporal errors of Example 2 with 1 = 2-10

Example 3 This example is to verify Theorem 4.2 with ug = 0 and f(x, ) = t° v(x), where
o > (¢ —1)/2and

v(x) = 0x7 121 —x)+ (1 —9)sinmx, x €,

with —0.5 <y < 1.5and @ € {0, 1}. _
We first consider « + o ¢ N and 6 = 1. Note that v € HY~¢(2) and from Fig. 5 we
conclude that

=0 (M7172ofo¢min{2,y+l}> and & =0 (M717207amin{l,y+l}). (75)

Then we take « +0 € Nand 6 = 0. In this situation, we have v € H? (2) withany 8 > 0
and according to Fig. 6, we observe faster convergence rates

& =0M™172% and & = oM7), (76)

Both this and the previous case are conformable to the sharp error bounds in Theorem 4.2.

5.2 Two-Dimensional Tests

We provide two more examples in two spatial dimensions: & = (0, 1)2. The reference
solution % corresponds to M = 120 and h = 277,
For 0 € {1, 2,3} and any x = (x1, x2) € 2, define
3 (x) if6o =1,
v(x) == X{0<xi<1/2}(x) if 6 =2, (7
sin(;rxy) sin(rxp) if 6 =3,

where §, denotes the Dirac distribution centered at z = (1/2, 1/2) € Q and y,, is the indicator
function of the region w, i.e., x (x) = 1 for x € w and x(x) = 0 for x ¢ w. It is not hard to
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Fig.5 Temporal errors of Example 3 with6 = 1 and h = 2-10
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Fig.6 Temporal errors of Example 3 with6 = 0 and h = 210

find that v € H? @ ~€(Q), where
—1 ife =1,
y(@):=11/2 if 0 =2, (78)
y € (3,00) if 6 =3.

Example 4 In this test, we take f = 0 and uo = v with v being defined in (77). From Fig. 7,
we see that & = O(M~!—«min2.y@) =1}y and & = o(M~!~¢minll.y@-1} for g € (2, 3},
where y (0) is defined by (78). This verifies the estimates in Theorem 4.1.

Example 5 To the end, we consider ug = 0 and f(x, t) = t°v(x) where o > (o — 1)/2 and
v is defined in (77). In Fig. 8, we report the numerical results in (75) for « + 0 ¢ N and
observe the same rates, with y being y (9) (cf. (78)). The case 8 = 3, o + o € N has also
been displayed in Fig. 9, which yields the same faster rates as in (76). These agree well with
the theoretical predictions in Theorem 4.2.
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Fig.7 Temporal errors of Example 4 with h = 273
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Fig.8 Temporal errors of Example 5 with 7 = 275

6 Conclusion

This paper is devoted to sharp error estimates of a time-spectral algorithm for time fractional
diffusion problems of order @ (0 < o < 1). Based on new regularity results in the Besov
space, optimal convergence rates have been derived with low regularity data. Particularly,
for the homogenuous case f = 0, optimal temporal convergence orders 1 + 2« and 1 + «
under L2(0, T; H'(2))-norm and H%/2(0, T; L?(£2))-norm have been shown theoretically
and numerically.
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A The Shifted Jacobi Polynomial

Givena, b > —1, the family of shifted Jacobi polynomial {S,f’b},fio on (0, T) are defined as
follows:

=D d* ks

TEk1 @’u @, 0<t<T, (79)
where u¥-? (1) = (T —1)"t? forall =1 < v, 6 < oo. Note that (79) is also called Rodrigues’
formula [56], which implies {Sl‘f’h},‘ziO is orthogonal with respect to the weight u®?on (0, T),
ie.,

ur oS =

a,b qa,b a,b
<Sk } Sl > ab = Sk 8](19
e

where dy; denotes the Kronecker product and

u TP (k4 a+ DIk +b+ 1
g ( )I( ) (80)

T Qk+a+b+DkTtk+a+b+1)

As {SZ’b}]fOZO forms a complete orthogonal basis of Limb 0,T), any v € Lia,b 0,7T)
admits a unique decomposition

o0

1

v=3 us witho= o (o, 5¢0) 81)
k=0 &’ "
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and the Li“,b-orthogonal projection of v onto P/ (0, T) is defined as @ﬁ,‘,bv = Z,/(VIZO Vg S,f’b.

For ease of notation, we shall set S = S, u* = u®*, ®}, = ®},", andall the superscripts

are omitted when a = 0.
Thanks to [7, Lemma 2.5], a standard calculation gives

_ Tk+1) .50
pi, sp0_ _LTEFD  gepo %
0+ “k Fk+1-—0) * ® (82)
_ r'k+1) P
Df_ 5P = 1 -5 P, 83
S, g TS (83)

where ) <6 < land —1 < 8 < o0.

LemmaA.1 Foranyv € HY2(0, T), it holds that

o _ a0 —
( @ (I — D) )v,q>HW2(O,T)_O Vg e Py(0, T). (84)

Consequently, we have the stability:

—a,0
o3

HeP0.T) < Cq Vlgero,1y > (85)

and the convergence: lim |(I — ®7%"Y|,a =0.
8 M~>oo|( M Yl 2(0,T)

Proof Given any fixed v € H“/Z(O, T), by [17, Theorem 1.4.4.3], we know that v €
Li—a,o (0, T). To prove (84), it is enough to consider g = S,?’fa forany 0 < k < M.
Thanks to (83), we have

« _ Tk+1D

DY g=—— ) pyase0,
T4 Tl —a LTS

Again, it follows from [17, Theorem 1.4.4.3] that D§._ g € (HY/2(0, T))*. Thus using the

definition of <I>;;"O and Lemma 2.1 gives

(P8, = @30, q) (1 = &3, D5 _q)

_w _ -0 a0
_I‘(k+1—a)<(1 o, O, (T —1)7°S; )

=0.

HY/2(0,T) - < (H®/2(0,T),(HY/2(0,T))*)

0.7)

This establishes (84) and by Lemma 2.1, we have

2
—a,0 —a,0 —a,0
cos(am/2 ‘Cb ) :<D“ >, d ’v)

(@7 /2) | Py HY/2(0,T) 0+ 7 M M "[garzo,T)

= (D%, v, d>7a’0v>
( 0+ M "l geroT)

< qD_a’O v /2 5
- ’ M Ha/Z(o,T)| e .1)

which implies (85).
By (84) and the proof of (85), we find that

I(I = 37"Vl garro.ry < sec@r/2)|v — qlyeror) Yq € Pu(0,T).
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Therefore, a standard density argument leads to
lim (1 — ") 0| ya =0.
[V I( M Wiy /2(0,T)

This finishes the proof of this lemma. O

B Proof of the Commutativity (57)
Let {x;}ien and {y;} jen be the orthonormal basis of X and Y, respectively. Assume Ax; =
Z?io aijyj witha;j € Rforalli € N. It is clear that

o0

2 .
> aij|" = 1AxiI5 < ARy Ixill% foralli e N, (86)
j=0

where ||Allx_, y denotes the operator norm of A.

We claim first that by definition, CID‘X,’Ivan e <I>X,’Ibzv in Liu_b (0, T; Z) whenever

v, "= vin Liu‘h (0, T; Z) for Z = X or Y. Besides, we have the identity

o0 T
2 2 2 b
”w”LfLubw,r:m=Z”“”'”Liab<o¢>=/o D i) u () d

' i=0 ' i=0

T
_ fo I3 1w () dr,

for all w = Z?io w;z; € Lia,b (0,T; Z), where z; = x; or y; and we used the monotone
convergence theorem (see [6, Theorem 4.1, pp.90]). Based on this, let us verify Av, — Av
inL?,,(0, T3 ¥) provided that v, "2 vin L?,,(0.T; X). Indeed,

T
lAv, — Av]?, 0T = / I(Av, — Av)(D)[13 n@b (1) dr
2, O.T: 0

T
< 1A%y /O (v — 0)O)15 1P () dr

2 2
= 1Ay o = val> oy
2

Now, we take v, = Y 7, v;x;, which converges to v in Lia,b (0, T; X). According

n— oo

. - . n—00 .
to the above discussions, ovP U ®“P vin L2 0,T; X) and Av, — Avin
M. X pasb

M, X
L%, ,(0,T;Y). To prove (57), it is sufficient to establish
e

AL vy = ) Ay 87)

Consider &" = Z?:o a;jyj, which converges to Ax; by (86) and further implies that

n n

b m—00 b b : 2 .
E ol v — EO Ax; @ vi = AQDZ,I’XU” in L7,,0.7:7). (88)
i=0 i=
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On the other hand, we find

n m n m
a,b a,b b

Zéi"’(bM vi:Z Zaijch vi |y = @Y , Zal/v, yJ—CIJMy v E"
i=0 =0 \i=0 =0 i=0
Since

n n

m—0Q . 2 .
YouE" ST ) viAxi = Av, in L2,,0.T:Y),
i=0 i=0

we conclude that
n
— .
Yoy ST el Av, in 12,0, T3 V).
i=0

This together with (88) proves (87) and completes the proof.
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