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Problem setting
▶ Composite convex optimization (CCO) problem

inf
x∈X

F(x) := f (x) + g(Ax) (CCO)

Assumptions:
* X, Y: Hilbert spaces with inner product ⟨·, ·⟩ 1

* A : X → Y: bounded linear operator
* f (g) : X(Y) → (−∞,+∞]: CCP 2 with constants µf (µg) ≥ 0
* Consistent condition: Adom f ∩ dom g ̸= ∅

▶ Linearly constrained optimization (LCO) problem

inf
x∈X

f (x) s.t.Ax = b (LCO)

▶ Bilinear saddle-point (BSP) problem

inf
x∈X

sup
y∈Y

L(x, y) := f (x) + ⟨y,Ax⟩ − g(y) (BSP)

▶ Many applications in:
- TV model (Image processing), Machine learning ...
- p-Laplacian (Numerical PDEs), Optimal transport, ...

1When no confusion arises, we use the same bracket ⟨·, ·⟩ for the inner products on X and Y.
2CCP means closed, convex and proper.



Optimality condition and Algorithm class

▶ First-order optimality conditions:
For (CCO) 0 ∈ ∂f (x∗) + A⋆∂g(Ax∗)

For (LCO) 0 ∈
[
∂f (x∗) + A⋆y∗

b − Ax∗

]
For (BSP) 0 ∈

[
∂f (x∗) + A⋆y∗

∂g⋆(y∗)− Ax∗

]
▶ A unified abstract presentation: Finding a zero point 0 ∈ M (x∗) of

a maximal monotone operator M : X → 2X .
▶ We are mainly interested in First-Order Methods (FOM) that

produce the iteration sequence {xk} with the access only to3

∇f /proxf , ∇g/proxg

or (for f = f1 + f2, g = g1 + g2)
∇f1/proxf2 , ∇g1/proxg2

3Here and in what follows, proxf denotes the proximal mapping of f :

proxf (x) = argmin
{

f (y) + 1/2 ∥x − y∥2
}



Proximal-gradient methods for (CCO) with A = I
▶ Gradient descent (GD) and Proximal point algorithm (PPA):

xk+1 = xk − s∇F(xk), xk+1 = xk − s∇F(xk+1)4

▶ Proximal-gradient method (PGM): xk+1 = xk − s(∇f (xk) +∇g(xk+1))
* Also known as Forward-Backward Splitting
* O(1/k) for convex and (1 − 1/κf ) for strongly convex

▶ Heavy ball (HB)5: xk+1 = xk − s∇F(xk) + βk(

Momentum︷ ︸︸ ︷
xk − xk−1)

* Better than GD with βk ∈ (0, 1)
* Optimal choice of strongly convex case

▶ Nesterov accelerated gradient (NAG-1983, NAG-2004):

xk+1 = x̄k − s∇F(x̄k), x̄k+1 = xk+1 + β(xk+1 − xk)

∗ O(1/k2) with βk = k/(k + 3)

∗ O(1 − 1/
√
κf )

k with βk = (
√
κf − 1)/(

√
κf + 1)

∗ Optimal rate
∗ Proximal gradient version = FISTA

▶ Güler’s PPA (SIOPT, 1994)

xk+1 = x̄k − s∇F(xk+1), x̄k+1 = xk+1 + β(xk+1 − xk)

4This presentation is equivalent to xk+1 = proxsF (xk)
5Polyak, 1964



Augmented Lagrangian methods for (LCO)

▶ Augmented Lagrangian method (ALM)

xk+1 = argmin
x∈X

{
L(x, λk) +

σ

2
∥Ax − b∥2

}
, λk+1 = λk + σ(Axk+1 − b)

▶ Equivalent to Bregman method and dual PPA
▶ Linearization (L-ALM) and relaxation (ADMM)
▶ O(1/k2) acceleration with momentum for the dual variable 6

▶ Acceleration with momentum for the primal variable 7

* O( 1k ) for convex and O( 1
k2 ) for strongly convex (Optimal) 8

* Extension to two block case (Acc-ADMM) 9

6He and Yuan, 2013; Kang et al. JSC, 2013
7Xu, SIOPT, 2017
8Ouyang and Xu, SIOPT, 2021
9Sabach and Teboulle, SIOPT, 2022; Zhang et al. arXiv:2206.05088, 2022



Primal-dual methods for (BSP)

▶ Extensions of GD and PPA:

x k+1 = x k − sM (x k), x k+1 = x k − sM (x k+1)

Diverge Full coupling

▶ Extra-gradient method (EGM, with ergodic rate O(1/k)) 10

x k = x k − sM (x k), x k+1 = x k − sM (x k)

▶ Primal-dual hybrid gradient method (PDHG) (Preconditioned PPA)

x k+1 = x k − sQ−1M (x k+1), Q =

[
I −sA⋆

O I

]
▶ Also known as the primal-dual proximal splitting (PDPS){

xk+1 = proxsf (xk − sA⋆yk)

yk+1 = proxsg(yk + sAxk+1)

▶ Diverge even for LP (He et al. JMIV, 2017)

10Ergodic means for the average x̄N =
∑N

i=0 aix i/
∑N

i=0 ai



▶ A symmetrized precondition remedy

x k+1 = x k − sQ−1M (x k+1), Q =

[
I −sA⋆

−sA I

]
▶ This is the Chambolle–Pock (CP) 11{

xk+1 = proxsf (xk − sA⋆yk)

yk+1 = proxsg(yk + sA(2xk+1 − xk))

▶ Optimal ergodic rate: O(1/k) for convex , O(1/k2) for partially strongly
convex and ρk for strongly convex

▶ Inertial corrected PDPS 12 (IC-PDPS, with momentum and correction)
x k+1 = x̄k − Q−1

k+1M (x k+1) + Q̂k+1(x k+1 − x k)︸ ︷︷ ︸
Correction

,

x̄k+1 = x k+1 + Λk+1(x k+1 − x k),

▶ Optimal nonergodic rate

11Chambolle and Pock, JMIV, 2013
12Valkonen, SIOPT, 2020



Motivation

▶ Almost all FOMs (without momentum) in the form

X+ = Γ(s,X)

▶ This is very close to Numerical Discretization

▶ Can we have a unified continuous perspective on FOMs?

▶ How about the numerical analysis approach for FOMs?
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O(sr)-resolution framework

Definition 1 (Lu, MAPR, 2022)
Given a FOM X+ = Γ(s,X) with Γ(0,X) = X , if there is an ODE
system

X ′ = Γ0(X) + sΓ1(X) + · · ·+ srΓ(X) (1)
that satisfies

∥∥X(s)− X+
∥∥ = o

(
sr+1

)
with r ≥ 0, where X(s) is the

solution of (1) with X(0) = X , then we call (1) the O(sr)-resolution
ODE of the FOM X+ = Γ(s,X)

Theorem 1 (Lu, MAPR, 2022)
Given a FOM X+ = Γ(s,X) with Γ(0,X) = X and sufficiently smooth
Γ(s,X) in both s and X Then its O(sr)-resolution ODE exists uniquely.



O(sr)-resolution without momentum

Look at E(s) = X(s)− X+ = X − Γ(s,X) +
∫ s
0

X ′(t, s) dt and the Taylor
expansion at s = 0

E(s) = E(0) + E ′(0)s + · · ·+ E(r+1)

(r + 1)!
sr+1 + o(sr+1)

Essentially, we have E(0) = E ′(0) = · · · = E(j)(0) = 0. This gives Γj

Corollary 1 (Lu, MAPR, 2022)
(i) The O(1)-resolution ODE of GD, PPA and PGM: X ′ = −∇F(X)

(ii) The O(s)-resolution ODE of GD is X ′ = −∇F(X)− s
2
∇2F(X) · ∇F(X)

(iii) The O(s)-resolution ODE of PPA is X ′ = −∇F(X)+ s
2
∇2F(X) ·∇F(X)

(iv) The O(s)-resolution ODE of PGM is

X ′ = −∇F(X) +
s
2
(∇2g(X)−∇2f (X)) · ∇F(X)
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Corollary 2 (Lu, MAPR, 2022)
(i) The O(1)-resolution ODE of GD, PPA, PDHG, CP and EGM are

X ′ = −M (X)

(ii) The O(s)-resolution ODE of GD is

X ′ = −M (X)− s
2
∇M (X) · M (X)

(iii) The O(s)-resolution ODE of PPA and EGM are the same

X ′ = −M (X) +
s
2
∇M (X) · M (X)

(iv) The O(s)-resolution ODE of PDHG is

X ′ = −M (X) +
s
2

[
∇M (X) +

[
O O
2A O

]]
· M (X)

(iv) The O(s)-resolution ODE of CP is

X ′ = −M (X) +
s
2

[
∇M (X) +

[
O 2A⋆

2A O

]]
· M (X)
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O(sr)-resolution with momentum

▶ For a general momentum method

xk+1 = xk − s∇F(xk) + β(s)(xk − xk−1)︸ ︷︷ ︸
Momentum

−β(s)s
[
∇F(xk) − ∇F(xk−1)

]

there is No such condition Γ(0,X) = 0.
▶ Key observation: A hybrid gradient descent transformation

xk+1 − xk + s∇F(xk)
√

sβ(s)
= β(s) ·

xk − xk−1 + s∇F(xk−1)
√

sβ(s)
−

√
s∇F(xk)

which leads to {
xk+1 = xk +

√
sβ(s)vk+1 − s∇F(x)

vk+1 = vk + (β(s) − 1)vk −
√

s∇F(x)

with lim
s→0

(β(s)− 1)/
√

s = 0

▶ This gives a new system of X = (x, v) that satisfies X+ = Γ(
√

s,X) with
Γ(0,X) = 0

▶ The same idea works for other momentum methods with dynamically
changing parameters and primal-dual methods



Theorem 2
(i) The O(1)-resolution ODE of HB and NAG with optimal β for strongly

convex objective are the same 13:[
x
v

]′

=

[
v

−2
√
µv −∇F(x)

]
⇐⇒ x ′′ + 2

√
µx ′ +∇F(x) = 0

(ii) The O(1)-resolution ODE of NAG-1983/FISTA for convex objective isx
v
γ

′

=

 v
− 3

2
√
γ

v −∇F(x)
√
γ

 ⇐⇒ x ′′ +
3

2
√
γ

x ′ +∇F(x) = 0

Since γ = t2/4, this gives the Su-Boyd-Candès (JMLR, 2016)

x ′′ +
3

t x ′ +∇F(x) = 0

13Polyak. 1964; Siegel. 2019; Wilson et al. JMLR, 2021; Shi et al., Math. Program., 2022;



(iii) The O(1)-resolution ODE of NAG-2004 is 14x
v
γ

′

=

 v
− 3+µγ

2
√

γ
v −∇F(x)

√
γ(1− µγ)

 ⇐⇒ x ′′ +
3 + µγ

2
√
γ

x ′ +∇F(x) = 0

(iv) The O(1)-resolution ODE of IC-PDPS is 15
x
v
Υ
θ


′

=


v − x

−θΥ−1 [S(v − x ) + M (x )]
2diag(S)Υ

θ


In second-order form

Υx ′′ + [θS +Υ] x ′ + θM (x ) = 0, S =

[
µf I A⋆

A µgI

]
In component wise{

γx ′′ + (γ + µf θ)x ′ + θ∇xL(x, y + y′) = 0

βy′′ + (β + µgθ)y′ + θ∇yL(x + x ′, y) = 0

14L., and Long Chen. Math. Program., 2022.
15L. arXiv:2405.14098v1, 2024.
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Semi-implicit AGD
For unconstrained minimization problem, we present a compact form of
the O(1)-resolution ODE of NAG-2004 with time scaling:

γx ′′ + (µ+ γ)x ′ +∇F(x) = 0

γ′ − µ+ γ = 0
(NAG flow)

▶ Semi-implicit scheme for Accelerated Gradient Descent (AGD) 16

γk ·
xk+1−xk

αk
− xk−xk−1

αk−1

αk
+ (µ+ γk) ·

xk+1 − xk

αk
+∇F(x̄k) = 0

▶ Composite case F = f + g

γk ·
xk+1−xk

αk
− xk−xk−1

αk−1

αk
+ (µ+ γk) ·

xk+1 − xk

αk
+∇f (x̄k) +∇g(xk+1) = 0

▶ Lyapunov analysis (optimal rate)

Ek := F(xk)− F(x∗) +
γk

2
∥vk − x∗∥2 ≤ min

{
L
k2

,

(
1 +

√
µf

Lf

)−k
}

16L., and Long Chen. Math. Program., 2022/arXiv:1912.09276, 2019; L. Optimization, 2023.



Find u ∈ H 1
0 (Ω) such that

−∆u = f in Ω = (0, 1)2

Use P1 Lagrange element with uniform mesh size h = 2−5. The
DoF is N = dimVh = (1/h + 1)2 = 1089.
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Restarting
▶ Restarting scheme

Function restart (FR) :
dF(x(t))

dt
> 0 O’Donoghue and Candès(FoCM, 2015)

Gradient restart (GR) :
〈
∇F(x(t)), x′

(t)
〉

> 0 O’Donoghue and Candès,(FoCM, 2015)

Speed restart (SR) :
d
∥∥x′(t)

∥∥2

dt
< 0 Su-Boyd-Candès (JMLR, 2016)

Gradient norm restart (GnR) :
d ∥∇F(x(t))∥2

dt
> 0
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Restart works very well with the iteration complexity ∼
√
κ

This yield the linear rate exp
(
−k/

√
κ
)



Implicit-explicit AALM
For (LCO), we propose a simplified form of the O(1)-resolution ODE of
IC-PDPS:

γx ′′ + (µ+ γ)x ′ +∇f (x) + A⊤y = 0

βy′ + b − A(x + x ′) = 0

γ′ − µ+ γ = 0

β′ + β = 0

(APD flow)

▶ Implicit-explicit scheme for Accelerated Augmented Lagrangian Method
(AALM) 17

γk ·

xk+1−xk
αk

−
xk−xk−1
αk−1

αk
+ (µ + γk) ·

xk+1 − xk

αk
+ ∇f (x̄k) + A⊤ȳk = 0

βk
yk+1 − yk

αk
+ b − A

(
xk+1 + (xk+1 − xk)/αk

)
= 0

▶ Lyapunov analysis (optimal nonergodic rate)

Ek := L(xk , y∗
) − L(x∗

, yk) +
γk

2

∥∥vk − x∗∥∥2
+

βk

2

∥∥yk − y∗∥∥2 ≤

Ck−1
, µ = 0,

Ck−2
, µ > 0.

17L. arXiv:2109.12604v2, 2023.



▶ For extension to the Hölder case ∇f ∈ C 0,ν and application
to optimal transport (ODE+AMG+SsN), see Hu et al.
(JSC,2023) and L. (JOTA, 2024).

▶ For the separable case f (x) = f1(x1) + f2(x2), we have
implicit-explicit schemes for accelerated ADMM; see L. and
Zhang (arXiv:2109.13467v2, 2023).



Semi-implicit APDGS
For (BSP), we have a simplified form of the O(1)-resolution ODE of
IC-PDPS:

Υx ′′ + [S +Υ] x ′ + M (x ) = 0

Υ′ − Σ+Υ = 0
(APDG flow)

▶ Implicit-explicit scheme for Accelerated Primal-Dual Gradient Splitting
(APDGS) 18

γk ·

xk+1−xk
αk

−
xk−xk−1
αk−1

αk
+ (µf + γk) ·

xk+1 − xk

αk
+ ∇f (x̄k) + A⊤ȳk = 0

βk ·

yk+1−yk
ηkαk

−
yk−yk−1

ηk−1αk−1

αk
+ (µg/ηk + βk) ·

yk+1 − yk

αk
+ ηk(∇g(ȳk) − Ax̄k+1) = 0

▶ Lyapunov analysis (optimal nonergodic rate)

Ek = L(xk , y∗
) − L(x∗

, yk) +
γk

2

∥∥vk − x∗∥∥2
+

βk

2

∥∥wk − y∗∥∥2 ≤



C
k
, µf = µg = 0,

C
k2

, µf + µg > 0,

ρ
k
, µf µg > 0,

18L. arXiv:2407.20195, 2024.
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Summary

▶ Conclusion:
* A unified O(sr)-resolution framework for FOMs
* A time discretization approach to construct FOMs
* A Lyapunov function analysis for optimal convergence rate
* Some numerical illustration with restarting

▶ Future topics:
* Extension to nonlinear saddle-point problems (General convex

optimization with nonlinear but convex constraint)

* Restarting with uniform convergence rate independent on the
condition number (Multilevel + restarting)

* Restart analysis for the primal-dual dynamics (No descent)

* Application to nonlinear variational problems (Nonconvex but
with special structure) and optimal transport

* Accelerated multiobjective gradient methods
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Thanks for your listening!

Any questions?
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