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Introduction



Problem setting

» Composite convex optimization (CCO) problem

inf F(2) = f(2) + 9(A)

Assumptions:

(CCO)

* X, Y: Hilbert spaces with inner product (-,-) !

* A :X — Y: bounded linear operator

* f(g) : X(Y) — (—o00,4+00]: CCP 2 with constants puf(p) > 0
*

Consistent condition: Adom f N dom g # ()
» Linearly constrained optimization (LCO) problem

iIEl}f{f($) st. Az =0

> Bilinear saddle-point (BSP) problem

inf sup L(z, y) := f(z) + (y, Az) — g(v)

z€X ycy

» Many applications in:
- TV model (Image processing), Machine learning ..

- p-laplacian (Numerical PDEs), Optimal transport

1 . .
When no confusion arises, we use the same bracket (-, -) for the inner products on X and Y.

CCP means closed, convex and proper.

(LCO)

(BSP)



Optimality condition and Algorithm class

» First-order optimality conditions:
For (CCO) 0 € df(z") + A*9g(Az™)

For (LCO) O¢€ [af(z? Zﬁ*y*}

For (BSP) 0 ¢ BJ; (ﬂ(ﬁy) )-FA;?}

> A unified abstract presentation: Finding a zero point 0 € M (x*) of
a maximal monotone operator M : X — 2%,

> We are mainly interested in First-Order Methods (FOM) that
produce the iteration sequence {z;} with the access only to3

Vf/prox;, Vg/prox,
or (for f=f+fo, g =1 + 92)
Vfi/prox;, Vg /prox,

3Here and in what follows, prox; denotes the proximal mapping of f:

prox;(z) = argmin {f(y) +1/2|z - y|*}



Proximal-gradient methods for (CCO) with A = I

» Gradient descent (GD) and Proximal point algorithm (PPA):

Tk+1 = T — SVF(Ik), Tk+1 = Tk — sVF(xk+1)4

v

Proximal-gradient method (PGM): 41 = o — s(Vf(ax) + Vg(zrt1))
*  Also known as Forward-Backward Splitting
* O(1/k) for convex and (1 — 1/ky) for strongly convex

Momentum
———
Heavy ball (HB)S: Tp1 = T — SVF (1) + Br(zr — 2p—-1)

*  Better than GD with 3 € (0,1)
* Optimal choice of strongly convex case

Nesterov accelerated gradient (NAG-1983, NAG-2004):

v

v

Tp1 = Tp — SVF(Tk), Tkt1 = Tht1 + B(@pt1 — an)

O(1/k?) with B8;, = k/(k + 3)
0(1 — 1/ /Rp)F with B = (/RF — 1)/(/FF + 1)

Optimal rate
Proximal gradient version = FISTA

Giiler's PPA (SIOPT, 1994)

* ¥ ¥ ¥

v

Tpr1 =T — SVF(Tey1),  Tepr = Tegr + B(@hg1 — an)

4_ . Lo .
This presentation is equivalent to x4 = proxyp(z))
5Po|yak, 1964



Augmented Lagrangian methods for (LCO)

» Augmented Lagrangian method (ALM)

Zr+1 = argmin {[:(:E, i) + % || Az — b||2} , Akt1 = A+ o(Azeyr — D)

zeX

Equivalent to Bregman method and dual PPA
Linearization (L-ALM) and relaxation (ADMM)

O(1/k?) acceleration with momentum for the dual variable ©

vV v vy

Acceleration with momentum for the primal variable *

* O(4) for convex and O(7%) for strongly convex (Optimal) 8
* Extension to two block case (Acc-ADMM) °

He and Yuan, 2013; Kang et al. JSC, 2013
Xu, SIOPT, 2017
Ouyang and Xu, SIOPT, 2021

6
7
8
9Sabach and Teboulle, SIOPT, 2022; Zhang et al. arXiv:2206.05088, 2022



Primal-dual methods for (BSP)

» Extensions of GD and PPA:

X1 =X — sM(xy), Xpt1 =X — SM(Xp41)

Diverge Full coupling

v

Extra-gradient method (EGM, with ergodic rate O(1/k)) *°

Xp=%Xp— SM(Xk), Xpr1=%Xp— sM(xx)

v

Primal-dual hybrid gradient method (PDHG) (Preconditioned PPA)

_ I —sA*
Xp1 =Xp—5Q T M(xpp1), Q= {() 91 }

» Also known as the primal-dual proximal splitting (PDPS)

{$k+1 = prox (= — sA™ i)

Yrt1 = ProxX,,(ye + sAze41)

> Diverge even for LP (He et al. JMIV, 2017)

10 . _
Ergodic means for the average Xy = Zf\,:o a;ix;/ Zf\':o a;



> A symmetrized precondition remedy

_ I —sA*
Xpp1 =X — sQ7 M (X p41), Q:{_SA b:, }

» This is the Chambolle-Pock (CP) !
1 = prox (z, — sAyx)
Yrt1 = ProxX,,(yx + sA(2zp1 — 7))

» Optimal ergodic rate: O(1/k) for convex , O(1/k?) for partially strongly
convex and p* for strongly convex

> Inertial corrected PDPS '? (IC-PDPS, with momentum and correction)

Xgt1 = X — Q;ﬁlM(xk-‘-l) + Q1 (Xpt1 — Xp),
N— —
Correction

Xk+1 = X k41 + Ak+1(x k+1 — Xk)»

» Optimal nonergodic rate

1:lChambolle and Pock, JMIV, 2013
12Valkonen, SIOPT, 2020



Motivation

» Almost all FOMs (without momentum) in the form
Xt =T(s,X)

P This is very close to Numerical Discretization
» Can we have a unified continuous perspective on FOMs?

» How about the numerical analysis approach for FOMs?



From FOM to ODE



O(s")-resolution framework

Definition 1 (Lu, MAPR, 2022)
Given a FOM X =T'(s, X) with I'(0, X) = X, if there is an ODE
system

X' =To(X) + sT1(X) + -+ s'T(X) (1)
that satisfies HX(s) — X+H = o (s""") with r > 0, where X(s) is the
solution of (1) with X(0) = X, then we call (1) the O(s")-resolution
ODE of the FOM Xt =T'(s, X)

Theorem 1 (Lu, MAPR, 2022)

Given a FOM X* =T\(s, X) with T'(0, X) = X and sufficiently smooth
I'(s, X) in both s and X Then its O(s")-resolution ODE exists uniquely.




O(s")-resolution without momentum

Look at E(s) = X(s) — XT =X —T(s, X) + [, X'(t,s) dt and the Taylor
expansion at s =0

E(T‘+1)

E(s) = E(0)+ E'(0)s+--- + WST“ +o(s™h)
Essentially, we have E(0) = E'(0) = --- = EY(0) = 0. This gives I';
Corollary 1 (Lu, MAPR, 2022)
(i) The O(1)-resolution ODE of GD, PPA and PGM: X' = -V F(X)
(i) The O(s)-resolution ODE of GD is X' = —VF(X) — $V*F(X) - VF(X)
(iii) The O(s)-resolution ODE of PPA is X' = —VF(X)+ $V*F(X)-VF(X)
(iv) The O(s)-resolution ODE of PGM is

X' = =VF(X)+ 3 (V3g(X) - V/(X)) - VF(X)



f(z) = 23 + 2% + exp(z1 + 72)

f(z) = 23 + 23 + exp(z1 + 72)

To

f(x) =z} + 23 + exp(x) + x2)

——0(1)-ODE
——0(s)-ODE
—PGM: s = 1/16

T2

029 028

027 025 025



Corollary 2 (Lu, MAPR, 2022)
(i) The O(1)-resolution ODE of GD, PPA, PDHG, CP and EGM are
X' =-M(X)
(if) The O(s)-resolution ODE of GD is
X' = —M(X) - %VM(X) - M(X)
(iii) The O(s)-resolution ODE of PPA and EGM are the same
X' = —M(X) + %VM(X) - M(X)

(iv) The O(s)-resolution ODE of PDHG is

X' = —M(X) +§ {VM(X) + [2(34 8}_ - M(X)
(iv) The O(s)-resolution ODE of CP is
X' = M(X)+ 5 [VM(X) + LOA 213*_] - M(X)




L(z,y) =y

— O(1)-ODE o
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O(s")-resolution with momentum

» For a general momentum method
Tpy1 = 2 — SV F(ay) + B(s)(mg — ap_1) —B(s)s [VF(zp) — VF(wp_1)]
Momentum
there is No such condition I'(0, X) = 0.
» Key observation: A hybrid gradient descent transformation

Tpt1 — T + SV F(zy) T — Tp—1 + sV F(zp—1)
= s) - — VsV F(zy
NTO) e NTE) VeV

which leads to
{Zk+1 = ap, + V5B8(s)vp41 — sVF(x)

k1 = vk + (B(s) — Vg — V5V F()
with lirr(l)(ﬁ(s) -1)/vs=0
s—
» This gives a new system of X = (z,v) that satisfies X = I'(y/s, X) with
r'(0,X)=0

» The same idea works for other momentum methods with dynamically
changing parameters and primal-dual methods



Theorem 2
(i) The O(1)-resolution ODE of HB and NAG with optimal (3 for strongly

convex objective are the same *3:

ml B [—2\/7“) . vE@| &' +2/fa + VF(z) =0

(ii) The O(1)-resolution ODE of NAG-1983/FISTA for convex objective is

I
€T v

v| = —%U—VF(I) — '+

Y Vel 2V

3 '+ VF(z)=0

Since v = t? /4, this gives the Su-Boyd-Candés (JMLR, 2016)

"+ %$/+VF($) =0

13Polyak. 1964; Siegel. 2019; Wilson et al. JMLR, 2021; Shi et al., Math. Program., 2022;



(i) The O(1)-resolution ODE of NAG-2004 is '

!/
x v
|:1;] = [—S;F\;?v—VF(:E) — '+ 3;:/’;715'+VF(33) =0
2 VA=)
(iv) The O(1)-resolution ODE of IC-PDPS is *°
’
X vV—Xx
v| —GT_I[S(V—X)—l—M(x)]
T 2diag(S)Y
0 0

In second-order form

" / _ _ ,ufl A*
Tx"+ [0S+ Y]x"+60M(x) =0, S_{A ugl}

In component wise

vz + (v 4 )z’ + 0V L(z,y+y) =0
By + (B+ ped)y + 0V, L(z+a',y) =0

14L., and Long Chen. Math. Program., 2022.
15 L. arXiv:2405.14098v1, 2024.



——0(1)-0DE

——FISTA: 5 = 1/16
— — FISTA: s = 1/16°
Rl )
* (a%v)
v 05 05 1
——0(1)-0DE
——1C-PDPS:
— — IC-PDPS:
4 o (@000
2 * (@)
o
2 3
4
s
8
o
s
10
a

O(1)-ODE
ISTA;

—0(1)-0DE
——IC-PDPS: s = 1/8

T @)
(@)




From ODE to FOM



Semi-implicit AGD

For unconstrained minimization problem, we present a compact form of
the O(1)-resolution ODE of NAG-2004 with time scaling:

vz + (u+ )7’ + VF(z) =0

, N 0 (NAG flow)
Y oHTY=

» Semi-implicit scheme for Accelerated Gradient Descent (AGD) ©
Thp1l —Tp T —Tp—1

ay oy I — I
Yo - —— Pl () S+ V(@) =0
Qf Qg

> Composite case F = f + g

Tht1l =Tk _ Th—Tp—1
o

Q. x — X _
Vi - L (pb ) - R L V(@) + V(1) = 0
(o7 (677

» Lyapunov analysis (optimal rate)

—k
* Yk (2 . L LLf
= — — — < _— e
Eri=F(zy) — F(z") + 5 lox — z*|| mln{kZ, (1+,/Lf> }
16

L., and Long Chen. Math. Program., 2022/arXiv:1912.09276, 2019; L. Optimization, 2023.



Find u € Hy (Q) such that
—Au=f in Q=(0,1)

Use P1 Lagrange element with uniform mesh size h = 275, The
DoF is N = dim V3, = (1/h + 1) = 1089.

104

—GD
102 —Semi-AGD| 1

0 100 200 300 400 500 600



Restarting

» Restarting scheme

Function restart (FR) :

dF(=(t)) ,
? > 0 O’Donoghue and Candés(FoCM, 2015)
t

Gradient restart (GR) : <VF(z(t)), z/(t)> > 0 O’Donoghue and Candes,(FoCM, 2015)

dl|«’ ()2
Speed restart (SR) : M < 0 Su-Boyd-Candés (JMLR, 2016)
t
) d|[|VF()?
Gradient norm restart (GnR) : —M8M8M———— >
dt
so00
_ wl [=SR
Sl |=FR
: Vil |-GR
o T —-GnR
w0 S
—Semi-AGD = .
4 l—sr &
“TI_FR §ma
wof | GR £ oo
—GnR F g0
o 200 250 300 350 400 450 500

o E) 100 150 200 250 500

1/h
Restart works very well with the iteration complexity ~ \/k

This yield the linear rate exp (fk/\/ﬁ)



Implicit-explicit AALM

For (LCO), we propose a simplified form of the O(1)-resolution ODE of
IC-PDPS:

v2" + (u+7)e + Vf(z)+ ATy =0
By +b—A(z+3")=0

Y —uty=0

B +B=0

(APD flow)

» Implicit-explicit scheme for Accelerated Augmented Lagrangian Method
(AALM) ¥

Th4+1"%% _ Tk—Tk—1
1

o o Tpy1 — Tk _ _
'Yk'A‘F(Hﬁ”%)'+a7+vf(zk)+14—r?lk:0
k
Yk+1 — Yk
JCTn S L ) (zpq1 + (zpg1 — o) /) =0

ag
» Lyapunov analysis (optimal nonergodic rate)

. " v B " ot p=o,
&= Lok, y™) — L™ w0 + = oe — o7+ S lue— v <0
2 2 Ck™?%, u>o0.

7 L. arXiv:2109.12604v2, 2023.



» For extension to the Holder case Vf € C and application
to optimal transport (ODE+AMG+SsN), see Hu et al.
(JSC,2023) and L. (JOTA, 2024).

» For the separable case f(z) = fi(x1) + fo(22), we have
implicit-explicit schemes for accelerated ADMM; see L. and
Zhang (arXiv:2109.13467v2, 2023).



Semi-implicit APDGS

For (BSP), we have a simplified form of the O(1)-resolution ODE of

IC-PDPS:

Tx" +[S+ Y] x’ + M(x) =0
< Sl e B (APDG flow)

T -X+YT=0

» Implicit-explicit scheme for Accelerated Primal-Dual Gradient Splitting

(APDGS) 8
el Tk Tk Tk—1
ek o kol +(Hf+7k)'%%,:zk+vf(ik)+"{r@k:0
Ykl =Yk _ Yk~ Yk—1
i L (g B) - % + mk(Vg(Tr) — ATpp1) = 0

» Lyapunov analysis (optimal nonergodic rate)

¥ B
& = Lo, y™) — L(z*, yp) + g [|or, — =™ ||* + 7’“ [lwp — v ||? <

18 L. arXiv:2407.20195, 2024.

la=la

bz—ﬁ

)

s

pf = pg =0,
/‘f+lig>0a

pfpg > 0,



Summary



Summary

» Conclusion:

* A unified O(s")-resolution framework for FOMs

* A time discretization approach to construct FOMs

* A Lyapunov function analysis for optimal convergence rate
* Some numerical illustration with restarting

» Future topics:

* Extension to nonlinear saddle-point problems (General convex
optimization with nonlinear but convex constraint)

* Restarting with uniform convergence rate independent on the
condition number (Multilevel + restarting)

* Restart analysis for the primal-dual dynamics (No descent)

* Application to nonlinear variational problems (Nonconvex but
with special structure) and optimal transport

* Accelerated multiobjective gradient methods
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Thanks for your listening!

Any questions?
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